Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19c Structured version   Visualization version   GIF version

Theorem cdleme19c 36095
 Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line. 𝐷, 𝐹 represent s2, f(s). We prove f(s) ≠ s2. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l = (le‘𝐾)
cdleme19.j = (join‘𝐾)
cdleme19.m = (meet‘𝐾)
cdleme19.a 𝐴 = (Atoms‘𝐾)
cdleme19.h 𝐻 = (LHyp‘𝐾)
cdleme19.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme19.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme19.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme19.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme19.y 𝑌 = ((𝑅 𝑇) 𝑊)
Assertion
Ref Expression
cdleme19c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐷)

Proof of Theorem cdleme19c
StepHypRef Expression
1 cdleme19.d . . . 4 𝐷 = ((𝑅 𝑆) 𝑊)
2 simp1l 1240 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
3 hllat 35153 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ Lat)
5 simp31 1252 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
6 simp23l 1379 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝐴)
7 eqid 2760 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 cdleme19.j . . . . . . 7 = (join‘𝐾)
9 cdleme19.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 35156 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
112, 5, 6, 10syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅 𝑆) ∈ (Base‘𝐾))
12 simp1r 1241 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑊𝐻)
13 cdleme19.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
147, 13lhpbase 35787 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
16 cdleme19.l . . . . . 6 = (le‘𝐾)
17 cdleme19.m . . . . . 6 = (meet‘𝐾)
187, 16, 17latmle2 17278 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑊) 𝑊)
194, 11, 15, 18syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) 𝑊)
201, 19syl5eqbr 4839 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐷 𝑊)
21 simp32 1253 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝑄)
22 simp33 1254 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
2321, 22jca 555 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)))
24 cdleme19.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
25 cdleme19.f . . . . 5 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
2616, 8, 17, 9, 13, 24, 25cdleme3 36027 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐹 𝑊)
2723, 26syld3an3 1516 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐹 𝑊)
28 nbrne2 4824 . . 3 ((𝐷 𝑊 ∧ ¬ 𝐹 𝑊) → 𝐷𝐹)
2920, 27, 28syl2anc 696 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐷𝐹)
3029necomd 2987 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐷)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  Basecbs 16059  lecple 16150  joincjn 17145  meetcmee 17146  Latclat 17246  Atomscatm 35053  HLchlt 35140  LHypclh 35773 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777 This theorem is referenced by:  cdleme19d  36096  cdleme20l1  36110
 Copyright terms: Public domain W3C validator