Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme2 Structured version   Visualization version   GIF version

Theorem cdleme2 35833
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents f(r). 𝑊 is the fiducial co-atom (hyperplane) w. Here we show that (r f(r)) w = u in their notation (4th line from bottom on p. 113). (Contributed by NM, 5-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝐹) 𝑊) = 𝑈)

Proof of Theorem cdleme2
StepHypRef Expression
1 cdleme1.l . . . 4 = (le‘𝐾)
2 cdleme1.j . . . 4 = (join‘𝐾)
3 cdleme1.m . . . 4 = (meet‘𝐾)
4 cdleme1.a . . . 4 𝐴 = (Atoms‘𝐾)
5 cdleme1.h . . . 4 𝐻 = (LHyp‘𝐾)
6 cdleme1.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme1.f . . . 4 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
81, 2, 3, 4, 5, 6, 7cdleme1 35832 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))
98oveq1d 6705 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝐹) 𝑊) = ((𝑅 𝑈) 𝑊))
10 simpll 805 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ HL)
11 simpr3l 1142 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝐴)
12 hllat 34968 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1312ad2antrr 762 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ Lat)
14 simpr1 1087 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃𝐴)
15 eqid 2651 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1615, 4atbase 34894 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1714, 16syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃 ∈ (Base‘𝐾))
18 simpr2 1088 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄𝐴)
1915, 4atbase 34894 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄 ∈ (Base‘𝐾))
2115, 2latjcl 17098 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
2213, 17, 20, 21syl3anc 1366 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
2315, 5lhpbase 35602 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2423ad2antlr 763 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑊 ∈ (Base‘𝐾))
2515, 3latmcl 17099 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
2613, 22, 24, 25syl3anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
276, 26syl5eqel 2734 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 ∈ (Base‘𝐾))
2815, 1, 3latmle2 17124 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
2913, 22, 24, 28syl3anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑄) 𝑊) 𝑊)
306, 29syl5eqbr 4720 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 𝑊)
3115, 1, 2, 3, 4atmod4i2 35471 . . 3 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → ((𝑅 𝑊) 𝑈) = ((𝑅 𝑈) 𝑊))
3210, 11, 27, 24, 30, 31syl131anc 1379 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑊) 𝑈) = ((𝑅 𝑈) 𝑊))
33 eqid 2651 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
341, 3, 33, 4, 5lhpmat 35634 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
35343ad2antr3 1248 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑊) = (0.‘𝐾))
3635oveq1d 6705 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑊) 𝑈) = ((0.‘𝐾) 𝑈))
37 hlol 34966 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
3837ad2antrr 762 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ OL)
3915, 2, 33olj02 34831 . . . 4 ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑈) = 𝑈)
4038, 27, 39syl2anc 694 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((0.‘𝐾) 𝑈) = 𝑈)
4136, 40eqtrd 2685 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑊) 𝑈) = 𝑈)
429, 32, 413eqtr2d 2691 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝐹) 𝑊) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  0.cp0 17084  Latclat 17092  OLcol 34779  Atomscatm 34868  HLchlt 34955  LHypclh 35588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592
This theorem is referenced by:  cdleme3  35842  cdleme37m  36067  cdleme39a  36070  cdleme50trn1  36154
  Copyright terms: Public domain W3C validator