Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22d Structured version   Visualization version   GIF version

Theorem cdleme22d 37473
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 9th line on p. 115. (Contributed by NM, 4-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme22d (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉 = ((𝑆 𝑇) 𝑊))

Proof of Theorem cdleme22d
StepHypRef Expression
1 simp3r 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑆 (𝑇 𝑉))
2 simp1l 1193 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝐾 ∈ HL)
3 simp22l 1288 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑇𝐴)
4 simp23l 1290 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉𝐴)
5 cdleme22.l . . . . . . . 8 = (le‘𝐾)
6 cdleme22.j . . . . . . . 8 = (join‘𝐾)
7 cdleme22.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatlej1 36505 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) → 𝑇 (𝑇 𝑉))
92, 3, 4, 8syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑇 (𝑇 𝑉))
102hllatd 36494 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝐾 ∈ Lat)
11 simp21l 1286 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑆𝐴)
12 eqid 2821 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
1312, 7atbase 36419 . . . . . . . 8 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1411, 13syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑆 ∈ (Base‘𝐾))
1512, 7atbase 36419 . . . . . . . 8 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
163, 15syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑇 ∈ (Base‘𝐾))
1712, 6, 7hlatjcl 36497 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) → (𝑇 𝑉) ∈ (Base‘𝐾))
182, 3, 4, 17syl3anc 1367 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑇 𝑉) ∈ (Base‘𝐾))
1912, 5, 6latjle12 17666 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑇 𝑉) ∈ (Base‘𝐾))) → ((𝑆 (𝑇 𝑉) ∧ 𝑇 (𝑇 𝑉)) ↔ (𝑆 𝑇) (𝑇 𝑉)))
2010, 14, 16, 18, 19syl13anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑆 (𝑇 𝑉) ∧ 𝑇 (𝑇 𝑉)) ↔ (𝑆 𝑇) (𝑇 𝑉)))
211, 9, 20mpbi2and 710 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑆 𝑇) (𝑇 𝑉))
2212, 6, 7hlatjcl 36497 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
232, 11, 3, 22syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑆 𝑇) ∈ (Base‘𝐾))
24 simp1r 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑊𝐻)
25 cdleme22.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2612, 25lhpbase 37128 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2724, 26syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑊 ∈ (Base‘𝐾))
28 cdleme22.m . . . . . . 7 = (meet‘𝐾)
2912, 5, 28latmlem1 17685 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝑇 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑆 𝑇) (𝑇 𝑉) → ((𝑆 𝑇) 𝑊) ((𝑇 𝑉) 𝑊)))
3010, 23, 18, 27, 29syl13anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑆 𝑇) (𝑇 𝑉) → ((𝑆 𝑇) 𝑊) ((𝑇 𝑉) 𝑊)))
3121, 30mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑆 𝑇) 𝑊) ((𝑇 𝑉) 𝑊))
32 simp1 1132 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp22 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
34 eqid 2821 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
355, 28, 34, 7, 25lhpmat 37160 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) → (𝑇 𝑊) = (0.‘𝐾))
3632, 33, 35syl2anc 586 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑇 𝑊) = (0.‘𝐾))
3736oveq1d 7165 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑇 𝑊) 𝑉) = ((0.‘𝐾) 𝑉))
38 simp23r 1291 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉 𝑊)
3912, 5, 6, 28, 7atmod4i1 36996 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑉𝐴𝑇 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → ((𝑇 𝑊) 𝑉) = ((𝑇 𝑉) 𝑊))
402, 4, 16, 27, 38, 39syl131anc 1379 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑇 𝑊) 𝑉) = ((𝑇 𝑉) 𝑊))
41 hlol 36491 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
422, 41syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝐾 ∈ OL)
4312, 7atbase 36419 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
444, 43syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉 ∈ (Base‘𝐾))
4512, 6, 34olj02 36356 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑉 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑉) = 𝑉)
4642, 44, 45syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((0.‘𝐾) 𝑉) = 𝑉)
4737, 40, 463eqtr3d 2864 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑇 𝑉) 𝑊) = 𝑉)
4831, 47breqtrd 5085 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑆 𝑇) 𝑊) 𝑉)
49 hlatl 36490 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
502, 49syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝐾 ∈ AtLat)
51 simp21r 1287 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ¬ 𝑆 𝑊)
52 simp3l 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑆𝑇)
535, 6, 28, 7, 25lhpat 37173 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑆𝑇)) → ((𝑆 𝑇) 𝑊) ∈ 𝐴)
542, 24, 11, 51, 3, 52, 53syl222anc 1382 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑆 𝑇) 𝑊) ∈ 𝐴)
555, 7atcmp 36441 . . . 4 ((𝐾 ∈ AtLat ∧ ((𝑆 𝑇) 𝑊) ∈ 𝐴𝑉𝐴) → (((𝑆 𝑇) 𝑊) 𝑉 ↔ ((𝑆 𝑇) 𝑊) = 𝑉))
5650, 54, 4, 55syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (((𝑆 𝑇) 𝑊) 𝑉 ↔ ((𝑆 𝑇) 𝑊) = 𝑉))
5748, 56mpbid 234 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑆 𝑇) 𝑊) = 𝑉)
5857eqcomd 2827 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉 = ((𝑆 𝑇) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5059  cfv 6350  (class class class)co 7150  Basecbs 16477  lecple 16566  joincjn 17548  meetcmee 17549  0.cp0 17641  Latclat 17649  OLcol 36304  Atomscatm 36393  AtLatcal 36394  HLchlt 36480  LHypclh 37114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118
This theorem is referenced by:  cdleme22g  37478
  Copyright terms: Public domain W3C validator