Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23a Structured version   Visualization version   GIF version

Theorem cdleme23a 35456
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b 𝐵 = (Base‘𝐾)
cdleme23.l = (le‘𝐾)
cdleme23.j = (join‘𝐾)
cdleme23.m = (meet‘𝐾)
cdleme23.a 𝐴 = (Atoms‘𝐾)
cdleme23.h 𝐻 = (LHyp‘𝐾)
cdleme23.v 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
Assertion
Ref Expression
cdleme23a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑉 𝑊)

Proof of Theorem cdleme23a
StepHypRef Expression
1 cdleme23.v . 2 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
2 cdleme23.b . . 3 𝐵 = (Base‘𝐾)
3 cdleme23.l . . 3 = (le‘𝐾)
4 simp11l 1170 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
5 hllat 34469 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
64, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
7 simp12l 1172 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝐴)
8 simp13l 1174 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇𝐴)
9 cdleme23.j . . . . . 6 = (join‘𝐾)
10 cdleme23.a . . . . . 6 𝐴 = (Atoms‘𝐾)
112, 9, 10hlatjcl 34472 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ 𝐵)
124, 7, 8, 11syl3anc 1324 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 𝑇) ∈ 𝐵)
13 simp2l 1085 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
14 simp11r 1171 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
15 cdleme23.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
162, 15lhpbase 35103 . . . . . 6 (𝑊𝐻𝑊𝐵)
1714, 16syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
18 cdleme23.m . . . . . 6 = (meet‘𝐾)
192, 18latmcl 17033 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
206, 13, 17, 19syl3anc 1324 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
212, 18latmcl 17033 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵)
226, 12, 20, 21syl3anc 1324 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵)
232, 3, 18latmle2 17058 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → ((𝑆 𝑇) (𝑋 𝑊)) (𝑋 𝑊))
246, 12, 20, 23syl3anc 1324 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) (𝑋 𝑊))
252, 3, 18latmle2 17058 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
266, 13, 17, 25syl3anc 1324 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) 𝑊)
272, 3, 6, 22, 20, 17, 24, 26lattrd 17039 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) 𝑊)
281, 27syl5eqbr 4679 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑉 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791   class class class wbr 4644  cfv 5876  (class class class)co 6635  Basecbs 15838  lecple 15929  joincjn 16925  meetcmee 16926  Latclat 17026  Atomscatm 34369  HLchlt 34456  LHypclh 35089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-poset 16927  df-lub 16955  df-glb 16956  df-join 16957  df-meet 16958  df-lat 17027  df-ats 34373  df-atl 34404  df-cvlat 34428  df-hlat 34457  df-lhyp 35093
This theorem is referenced by:  cdleme28a  35477
  Copyright terms: Public domain W3C validator