Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26ee Structured version   Visualization version   GIF version

Theorem cdleme26ee 34460
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t v = p q, fz(s) fz(t) v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme26e.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme26e.f 𝐹 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme26e.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊)))
cdleme26e.o 𝑂 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊)))
cdleme26e.i 𝐼 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme26e.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
Assertion
Ref Expression
cdleme26ee ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝐼 (𝐸 𝑉))
Distinct variable groups:   𝑧,𝑢,𝐴   𝑧,𝐵,𝑢   𝑧,𝐻   𝑧, ,𝑢   𝑧,𝐾   𝑧, ,𝑢   𝑧, ,𝑢   𝑢,𝑁   𝑢,𝑂   𝑧,𝑃,𝑢   𝑧,𝑄,𝑢   𝑧,𝑆,𝑢   𝑧,𝑇,𝑢   𝑧,𝑈,𝑢   𝑧,𝑊,𝑢   𝑧,𝑉
Allowed substitution hints:   𝐸(𝑧,𝑢)   𝐹(𝑧,𝑢)   𝐻(𝑢)   𝐼(𝑧,𝑢)   𝐾(𝑢)   𝑁(𝑧)   𝑂(𝑧)   𝑉(𝑢)

Proof of Theorem cdleme26ee
StepHypRef Expression
1 simp11l 1165 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝐾 ∈ HL)
2 simp11r 1166 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝑊𝐻)
3 simp12 1085 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp13 1086 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp3l1 1159 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝑃𝑄)
6 cdleme26.l . . . 4 = (le‘𝐾)
7 cdleme26.j . . . 4 = (join‘𝐾)
8 cdleme26.a . . . 4 𝐴 = (Atoms‘𝐾)
9 cdleme26.h . . . 4 𝐻 = (LHyp‘𝐾)
106, 7, 8, 9cdlemb2 34139 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑧𝐴𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))
111, 2, 3, 4, 5, 10syl221anc 1329 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))
12 nfv 1830 . . 3 𝑧(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄)))
13 cdleme26e.i . . . . 5 𝐼 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
14 nfra1 2925 . . . . . 6 𝑧𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁)
15 nfcv 2751 . . . . . 6 𝑧𝐵
1614, 15nfriota 6498 . . . . 5 𝑧(𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
1713, 16nfcxfr 2749 . . . 4 𝑧𝐼
18 nfcv 2751 . . . 4 𝑧
19 cdleme26e.e . . . . . 6 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
20 nfra1 2925 . . . . . . 7 𝑧𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂)
2120, 15nfriota 6498 . . . . . 6 𝑧(𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
2219, 21nfcxfr 2749 . . . . 5 𝑧𝐸
23 nfcv 2751 . . . . 5 𝑧
24 nfcv 2751 . . . . 5 𝑧𝑉
2522, 23, 24nfov 6553 . . . 4 𝑧(𝐸 𝑉)
2617, 18, 25nfbr 4624 . . 3 𝑧 𝐼 (𝐸 𝑉)
27 simp111 1183 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp112 1184 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
29 simp113 1185 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
30 simp121 1186 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
31 simp122 1187 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
32 simp123 1188 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑉𝐴𝑉 𝑊))
33 simp13l 1169 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)))
34 simp13r 1170 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑇 𝑉) = (𝑃 𝑄))
35 simp3r 1083 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → ¬ 𝑧 (𝑃 𝑄))
3634, 35jca 553 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → ((𝑇 𝑉) = (𝑃 𝑄) ∧ ¬ 𝑧 (𝑃 𝑄)))
37 simp2 1055 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑧𝐴)
38 simp3l 1082 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → ¬ 𝑧 𝑊)
3937, 38jca 553 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
40 cdleme26.b . . . . . 6 𝐵 = (Base‘𝐾)
41 cdleme26.m . . . . . 6 = (meet‘𝐾)
42 cdleme26e.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
43 cdleme26e.f . . . . . 6 𝐹 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
44 cdleme26e.n . . . . . 6 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊)))
45 cdleme26e.o . . . . . 6 𝑂 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊)))
4640, 6, 7, 41, 8, 9, 42, 43, 44, 45, 13, 19cdleme26e 34459 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ ((𝑇 𝑉) = (𝑃 𝑄) ∧ ¬ 𝑧 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐼 (𝐸 𝑉))
4727, 28, 29, 30, 31, 32, 33, 36, 39, 46syl333anc 1350 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝐼 (𝐸 𝑉))
48473exp 1256 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → (𝑧𝐴 → ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝐼 (𝐸 𝑉))))
4912, 26, 48rexlimd 3008 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → (∃𝑧𝐴𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝐼 (𝐸 𝑉)))
5011, 49mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝐼 (𝐸 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897   class class class wbr 4578  cfv 5790  crio 6488  (class class class)co 6527  Basecbs 15644  lecple 15724  joincjn 16716  meetcmee 16717  Atomscatm 33362  HLchlt 33449  LHypclh 34082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-riotaBAD 33051
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-undef 7264  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-oposet 33275  df-ol 33277  df-oml 33278  df-covers 33365  df-ats 33366  df-atl 33397  df-cvlat 33421  df-hlat 33450  df-llines 33596  df-lplanes 33597  df-lvols 33598  df-lines 33599  df-psubsp 33601  df-pmap 33602  df-padd 33894  df-lhyp 34086
This theorem is referenced by:  cdleme27a  34467
  Copyright terms: Public domain W3C validator