Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme28a Structured version   Visualization version   GIF version

Theorem cdleme28a 34459
Description: Lemma for cdleme25b 34443. TODO: FIX COMMENT. (Contributed by NM, 4-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
cdleme28a.v 𝑉 = ((𝑠 𝑡) (𝑋 𝑊))
Assertion
Ref Expression
cdleme28a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊)))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑧,𝑉   𝑊,𝑠,𝑡,𝑢,𝑧   𝑋,𝑠
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑉(𝑢,𝑡,𝑠)   𝑋(𝑧,𝑢,𝑡)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme28a
StepHypRef Expression
1 cdleme26.b . . 3 𝐵 = (Base‘𝐾)
2 cdleme26.l . . 3 = (le‘𝐾)
3 simp11l 1164 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐾 ∈ HL)
4 hllat 33451 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
53, 4syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐾 ∈ Lat)
6 simp11r 1165 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑊𝐻)
7 simp12 1084 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp13 1085 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 simp22 1087 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
10 simp21 1086 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑃𝑄)
11 cdleme26.j . . . . 5 = (join‘𝐾)
12 cdleme26.m . . . . 5 = (meet‘𝐾)
13 cdleme26.a . . . . 5 𝐴 = (Atoms‘𝐾)
14 cdleme26.h . . . . 5 𝐻 = (LHyp‘𝐾)
15 cdleme27.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
16 cdleme27.f . . . . 5 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
17 cdleme27.z . . . . 5 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
18 cdleme27.n . . . . 5 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
19 cdleme27.d . . . . 5 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
20 cdleme27.c . . . . 5 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
211, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdleme27cl 34455 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ 𝑃𝑄)) → 𝐶𝐵)
223, 6, 7, 8, 9, 10, 21syl222anc 1333 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶𝐵)
23 simp23 1088 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
24 cdleme27.g . . . . . 6 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
25 cdleme27.o . . . . . 6 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
26 cdleme27.e . . . . . 6 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
27 cdleme27.y . . . . . 6 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
281, 2, 11, 12, 13, 14, 15, 24, 17, 25, 26, 27cdleme27cl 34455 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ 𝑃𝑄)) → 𝑌𝐵)
293, 6, 7, 8, 23, 10, 28syl222anc 1333 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑌𝐵)
30 simp11 1083 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3130, 9, 233jca 1234 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)))
32 simp33 1091 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
33 simp31 1089 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠𝑡)
34 simp32l 1178 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠 (𝑋 𝑊)) = 𝑋)
35 simp32r 1179 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑡 (𝑋 𝑊)) = 𝑋)
3633, 34, 353jca 1234 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))
37 cdleme28a.v . . . . . . 7 𝑉 = ((𝑠 𝑡) (𝑋 𝑊))
381, 2, 11, 12, 13, 14, 37cdleme23b 34439 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → 𝑉𝐴)
3931, 32, 36, 38syl3anc 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉𝐴)
401, 13atbase 33377 . . . . 5 (𝑉𝐴𝑉𝐵)
4139, 40syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉𝐵)
421, 11latjcl 16822 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → (𝑌 𝑉) ∈ 𝐵)
435, 29, 41, 42syl3anc 1317 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 𝑉) ∈ 𝐵)
44 simp33l 1180 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑋𝐵)
451, 14lhpbase 34085 . . . . . 6 (𝑊𝐻𝑊𝐵)
466, 45syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑊𝐵)
471, 12latmcl 16823 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
485, 44, 46, 47syl3anc 1317 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋 𝑊) ∈ 𝐵)
491, 11latjcl 16822 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑌 (𝑋 𝑊)) ∈ 𝐵)
505, 29, 48, 49syl3anc 1317 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 (𝑋 𝑊)) ∈ 𝐵)
511, 2, 11, 12, 13, 14, 37cdleme23c 34440 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → 𝑠 (𝑡 𝑉))
5231, 32, 36, 51syl3anc 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠 (𝑡 𝑉))
5333, 52jca 552 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
541, 2, 11, 12, 13, 14, 37cdleme23a 34438 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → 𝑉 𝑊)
5531, 32, 36, 54syl3anc 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉 𝑊)
5639, 55jca 552 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑉𝐴𝑉 𝑊))
571, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27cdleme27a 34456 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
5830, 10, 9, 7, 8, 23, 53, 56, 57syl332anc 1348 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶 (𝑌 𝑉))
59 simp22l 1172 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠𝐴)
60 simp23l 1174 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑡𝐴)
611, 11, 13hlatjcl 33454 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑠𝐴𝑡𝐴) → (𝑠 𝑡) ∈ 𝐵)
623, 59, 60, 61syl3anc 1317 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠 𝑡) ∈ 𝐵)
631, 2, 12latmle2 16848 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑠 𝑡) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → ((𝑠 𝑡) (𝑋 𝑊)) (𝑋 𝑊))
645, 62, 48, 63syl3anc 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝑠 𝑡) (𝑋 𝑊)) (𝑋 𝑊))
6537, 64syl5eqbr 4612 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉 (𝑋 𝑊))
661, 2, 11latjlej2 16837 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑉𝐵 ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵)) → (𝑉 (𝑋 𝑊) → (𝑌 𝑉) (𝑌 (𝑋 𝑊))))
675, 41, 48, 29, 66syl13anc 1319 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑉 (𝑋 𝑊) → (𝑌 𝑉) (𝑌 (𝑋 𝑊))))
6865, 67mpd 15 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 𝑉) (𝑌 (𝑋 𝑊)))
691, 2, 5, 22, 43, 50, 58, 68lattrd 16829 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶 (𝑌 (𝑋 𝑊)))
701, 2, 11latlej2 16832 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑋 𝑊) (𝑌 (𝑋 𝑊)))
715, 29, 48, 70syl3anc 1317 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋 𝑊) (𝑌 (𝑋 𝑊)))
721, 2, 11latjle12 16833 . . 3 ((𝐾 ∈ Lat ∧ (𝐶𝐵 ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 (𝑋 𝑊)) ∈ 𝐵)) → ((𝐶 (𝑌 (𝑋 𝑊)) ∧ (𝑋 𝑊) (𝑌 (𝑋 𝑊))) ↔ (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊))))
735, 22, 48, 50, 72syl13anc 1319 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝐶 (𝑌 (𝑋 𝑊)) ∧ (𝑋 𝑊) (𝑌 (𝑋 𝑊))) ↔ (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊))))
7469, 71, 73mpbi2and 957 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  ifcif 4035   class class class wbr 4577  cfv 5789  crio 6487  (class class class)co 6526  Basecbs 15643  lecple 15723  joincjn 16715  meetcmee 16716  Latclat 16816  Atomscatm 33351  HLchlt 33438  LHypclh 34071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-riotaBAD 33040
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-1st 7036  df-2nd 7037  df-undef 7263  df-preset 16699  df-poset 16717  df-plt 16729  df-lub 16745  df-glb 16746  df-join 16747  df-meet 16748  df-p0 16810  df-p1 16811  df-lat 16817  df-clat 16879  df-oposet 33264  df-ol 33266  df-oml 33267  df-covers 33354  df-ats 33355  df-atl 33386  df-cvlat 33410  df-hlat 33439  df-llines 33585  df-lplanes 33586  df-lvols 33587  df-lines 33588  df-psubsp 33590  df-pmap 33591  df-padd 33883  df-lhyp 34075
This theorem is referenced by:  cdleme28b  34460
  Copyright terms: Public domain W3C validator