Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme30a Structured version   Visualization version   GIF version

Theorem cdleme30a 34480
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
cdleme30.b 𝐵 = (Base‘𝐾)
cdleme30.l = (le‘𝐾)
cdleme30.j = (join‘𝐾)
cdleme30.m = (meet‘𝐾)
cdleme30.a 𝐴 = (Atoms‘𝐾)
cdleme30.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme30a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)

Proof of Theorem cdleme30a
StepHypRef Expression
1 simp1l 1077 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
2 hllat 33464 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ Lat)
4 simp21 1086 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐴)
5 cdleme30.b . . . . 5 𝐵 = (Base‘𝐾)
6 cdleme30.a . . . . 5 𝐴 = (Atoms‘𝐾)
75, 6atbase 33390 . . . 4 (𝑠𝐴𝑠𝐵)
84, 7syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐵)
9 simp23 1088 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑌𝐵)
10 simp1r 1078 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐻)
11 cdleme30.h . . . . . 6 𝐻 = (LHyp‘𝐾)
125, 11lhpbase 34098 . . . . 5 (𝑊𝐻𝑊𝐵)
1310, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐵)
14 cdleme30.m . . . . 5 = (meet‘𝐾)
155, 14latmcl 16821 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
163, 9, 13, 15syl3anc 1317 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 𝑊) ∈ 𝐵)
17 simp22l 1172 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋𝐵)
18 cdleme30.j . . . 4 = (join‘𝐾)
195, 18latjass 16864 . . 3 ((𝐾 ∈ Lat ∧ (𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑋𝐵)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
203, 8, 16, 17, 19syl13anc 1319 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
21 simp3l 1081 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) = 𝑋)
22 simp3r 1082 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 𝑌)
23 cdleme30.l . . . . . . . 8 = (le‘𝐾)
245, 23, 14latmlem1 16850 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
253, 17, 9, 13, 24syl13anc 1319 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
2622, 25mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) (𝑌 𝑊))
275, 14latmcl 16821 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
283, 17, 13, 27syl3anc 1317 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) ∈ 𝐵)
295, 23, 18latjlej2 16835 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑠𝐵)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
303, 28, 16, 8, 29syl13anc 1319 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
3126, 30mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊)))
3221, 31eqbrtrrd 4601 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 (𝑠 (𝑌 𝑊)))
335, 18latjcl 16820 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
343, 8, 16, 33syl3anc 1317 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
355, 23, 18latleeqj2 16833 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑠 (𝑌 𝑊)) ∈ 𝐵) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
363, 17, 34, 35syl3anc 1317 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
3732, 36mpbid 220 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊)))
38 simp1 1053 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
395, 23, 18, 14, 11lhpmod2i2 34138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
4038, 9, 17, 22, 39syl121anc 1322 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
4140oveq2d 6543 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = (𝑠 (𝑌 (𝑊 𝑋))))
42 simp22 1087 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
43 eqid 2609 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
445, 23, 18, 43, 11lhpj1 34122 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = (1.‘𝐾))
4538, 42, 44syl2anc 690 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑊 𝑋) = (1.‘𝐾))
4645oveq2d 6543 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = (𝑌 (1.‘𝐾)))
47 hlol 33462 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
481, 47syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ OL)
495, 14, 43olm11 33328 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵) → (𝑌 (1.‘𝐾)) = 𝑌)
5048, 9, 49syl2anc 690 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (1.‘𝐾)) = 𝑌)
5146, 50eqtrd 2643 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = 𝑌)
5251oveq2d 6543 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 (𝑊 𝑋))) = (𝑠 𝑌))
535, 23, 18latlej1 16829 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑠 (𝑠 (𝑋 𝑊)))
543, 8, 28, 53syl3anc 1317 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 (𝑠 (𝑋 𝑊)))
5554, 21breqtrd 4603 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑋)
565, 23, 3, 8, 17, 9, 55, 22lattrd 16827 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑌)
575, 23, 18latleeqj1 16832 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵𝑌𝐵) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
583, 8, 9, 57syl3anc 1317 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
5956, 58mpbid 220 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌) = 𝑌)
6041, 52, 593eqtrd 2647 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = 𝑌)
6120, 37, 603eqtr3d 2651 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  cfv 5790  (class class class)co 6527  Basecbs 15641  lecple 15721  joincjn 16713  meetcmee 16714  1.cp1 16807  Latclat 16814  OLcol 33275  Atomscatm 33364  HLchlt 33451  LHypclh 34084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-psubsp 33603  df-pmap 33604  df-padd 33896  df-lhyp 34088
This theorem is referenced by:  cdleme32b  34544
  Copyright terms: Public domain W3C validator