Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sdnN Structured version   Visualization version   GIF version

Theorem cdleme31sdnN 34492
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme31sdn.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme31sdn.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme31sdn.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
Assertion
Ref Expression
cdleme31sdnN 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝑠 / 𝑡𝐷)
Distinct variable groups:   𝑡,   𝑡,   𝑡,𝑃   𝑡,𝑄   𝑡,𝑈   𝑡,𝑊   𝑡,𝑠
Allowed substitution hints:   𝐶(𝑡,𝑠)   𝐷(𝑡,𝑠)   𝑃(𝑠)   𝑄(𝑠)   𝑈(𝑠)   𝐼(𝑡,𝑠)   (𝑠)   (𝑡,𝑠)   (𝑠)   𝑁(𝑡,𝑠)   𝑊(𝑠)

Proof of Theorem cdleme31sdnN
StepHypRef Expression
1 cdleme31sdn.n . 2 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
2 biid 249 . . 3 (𝑠 (𝑃 𝑄) ↔ 𝑠 (𝑃 𝑄))
3 vex 3171 . . . 4 𝑠 ∈ V
4 cdleme31sdn.d . . . . 5 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
5 cdleme31sdn.c . . . . 5 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
64, 5cdleme31sc 34489 . . . 4 (𝑠 ∈ V → 𝑠 / 𝑡𝐷 = 𝐶)
73, 6ax-mp 5 . . 3 𝑠 / 𝑡𝐷 = 𝐶
82, 7ifbieq2i 4055 . 2 if(𝑠 (𝑃 𝑄), 𝐼, 𝑠 / 𝑡𝐷) = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
91, 8eqtr4i 2630 1 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝑠 / 𝑡𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1975  Vcvv 3168  csb 3494  ifcif 4031   class class class wbr 4573  (class class class)co 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-iota 5750  df-fv 5794  df-ov 6526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator