Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme36m Structured version   Visualization version   GIF version

Theorem cdleme36m 34563
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on 𝑃 𝑄 line. TODO: FIX COMMENT. (Contributed by NM, 11-Mar-2013.)
Hypotheses
Ref Expression
cdleme36.b 𝐵 = (Base‘𝐾)
cdleme36.l = (le‘𝐾)
cdleme36.j = (join‘𝐾)
cdleme36.m = (meet‘𝐾)
cdleme36.a 𝐴 = (Atoms‘𝐾)
cdleme36.h 𝐻 = (LHyp‘𝐾)
cdleme36.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme36.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme36.v 𝑉 = ((𝑡 𝐸) 𝑊)
cdleme36.f 𝐹 = ((𝑅 𝑉) (𝐸 ((𝑡 𝑅) 𝑊)))
cdleme36.c 𝐶 = ((𝑆 𝑉) (𝐸 ((𝑡 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme36m ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑅 = 𝑆)

Proof of Theorem cdleme36m
StepHypRef Expression
1 simp11 1083 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3rl 1126 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
3 simp12 1084 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp13 1085 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp21 1086 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑃𝑄)
6 simp3rr 1127 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → ¬ 𝑡 (𝑃 𝑄))
7 cdleme36.l . . . . 5 = (le‘𝐾)
8 cdleme36.j . . . . 5 = (join‘𝐾)
9 cdleme36.m . . . . 5 = (meet‘𝐾)
10 cdleme36.a . . . . 5 𝐴 = (Atoms‘𝐾)
11 cdleme36.h . . . . 5 𝐻 = (LHyp‘𝐾)
12 cdleme36.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
13 cdleme36.e . . . . 5 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
147, 8, 9, 10, 11, 12, 13cdleme3fa 34337 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑡 (𝑃 𝑄))) → 𝐸𝐴)
151, 3, 4, 2, 5, 6, 14syl132anc 1335 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝐸𝐴)
167, 8, 9, 10, 11, 12, 13cdleme3 34338 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑡 (𝑃 𝑄))) → ¬ 𝐸 𝑊)
171, 3, 4, 2, 5, 6, 16syl132anc 1335 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → ¬ 𝐸 𝑊)
1815, 17jca 552 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝐸𝐴 ∧ ¬ 𝐸 𝑊))
19 simp13l 1168 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑄𝐴)
2019, 5jca 552 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑄𝐴𝑃𝑄))
217, 8, 9, 10, 11, 12, 13cdleme3b 34330 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝐸𝑡)
221, 3, 20, 2, 21syl13anc 1319 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝐸𝑡)
2322necomd 2836 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑡𝐸)
24 simp22 1087 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
25 simp23 1088 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
26 simp3l1 1158 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑅 (𝑃 𝑄))
27 simp3r 1082 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))
28 cdleme36.b . . . 4 𝐵 = (Base‘𝐾)
2928, 7, 8, 9, 10, 11, 12, 13cdleme36a 34562 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑅 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄))) → ¬ 𝑅 (𝑡 𝐸))
301, 3, 19, 5, 24, 26, 27, 29syl331anc 1342 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → ¬ 𝑅 (𝑡 𝐸))
31 simp3l2 1159 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
3228, 7, 8, 9, 10, 11, 12, 13cdleme36a 34562 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄))) → ¬ 𝑆 (𝑡 𝐸))
331, 3, 19, 5, 25, 31, 27, 32syl331anc 1342 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → ¬ 𝑆 (𝑡 𝐸))
34 simp3l3 1160 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝐹 = 𝐶)
35 cdleme36.v . . 3 𝑉 = ((𝑡 𝐸) 𝑊)
36 cdleme36.f . . 3 𝐹 = ((𝑅 𝑉) (𝐸 ((𝑡 𝑅) 𝑊)))
37 cdleme36.c . . 3 𝐶 = ((𝑆 𝑉) (𝐸 ((𝑡 𝑆) 𝑊)))
387, 8, 9, 10, 11, 35, 36, 37cdleme35h 34558 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (𝐸𝐴 ∧ ¬ 𝐸 𝑊)) ∧ (𝑡𝐸 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑡 𝐸) ∧ ¬ 𝑆 (𝑡 𝐸) ∧ 𝐹 = 𝐶)) → 𝑅 = 𝑆)
391, 2, 18, 23, 24, 25, 30, 33, 34, 38syl333anc 1349 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐶) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑅 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  cfv 5790  (class class class)co 6527  Basecbs 15641  lecple 15721  joincjn 16713  meetcmee 16714  Atomscatm 33364  HLchlt 33451  LHypclh 34084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-lines 33601  df-psubsp 33603  df-pmap 33604  df-padd 33896  df-lhyp 34088
This theorem is referenced by:  cdleme38m  34565
  Copyright terms: Public domain W3C validator