![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3fa | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. See cdleme3 36045. (Contributed by NM, 6-Oct-2012.) |
Ref | Expression |
---|---|
cdleme1.l | ⊢ ≤ = (le‘𝐾) |
cdleme1.j | ⊢ ∨ = (join‘𝐾) |
cdleme1.m | ⊢ ∧ = (meet‘𝐾) |
cdleme1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme1.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme3fa | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme1.l | . 2 ⊢ ≤ = (le‘𝐾) | |
2 | cdleme1.j | . 2 ⊢ ∨ = (join‘𝐾) | |
3 | cdleme1.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | cdleme1.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdleme1.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdleme1.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
7 | cdleme1.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
8 | eqid 2760 | . 2 ⊢ ((𝑃 ∨ 𝑅) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme3h 36043 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 lecple 16170 joincjn 17165 meetcmee 17166 Atomscatm 35071 HLchlt 35158 LHypclh 35791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-p1 17261 df-lat 17267 df-clat 17329 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-lines 35308 df-psubsp 35310 df-pmap 35311 df-padd 35603 df-lhyp 35795 |
This theorem is referenced by: cdleme3 36045 cdleme7d 36054 cdleme7ga 36056 cdleme11j 36075 cdleme11k 36076 cdleme11 36078 cdleme14 36081 cdleme15a 36082 cdleme16b 36087 cdleme16c 36088 cdleme16d 36089 cdleme16e 36090 cdleme16f 36091 cdleme19d 36114 cdleme20f 36122 cdleme20l1 36128 cdleme20l2 36129 cdleme22f2 36155 cdleme22g 36156 cdlemefr32sn2aw 36212 cdleme35a 36256 cdleme36m 36269 cdleme43bN 36298 |
Copyright terms: Public domain | W3C validator |