Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7 Structured version   Visualization version   GIF version

Theorem cdleme7 35854
 Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐺 and 𝐹 represent fs(r) and f(s) respectively. 𝑊 is the fiducial co-atom (hyperplane) that they call w. Here and in cdleme7ga 35853 above, we show that fs(r) ∈ W (top of p. 114), meaning it is an atom and not under w, which in our notation is expressed as 𝐺 ∈ 𝐴 ∧ ¬ 𝐺 ≤ 𝑊. (Note that we do not have a symbol for their W.) Their proof provides no details of our cdleme7aa 35847 through cdleme7 35854, so there may be a simpler proof that we have overlooked. (Contributed by NM, 9-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l = (le‘𝐾)
cdleme4.j = (join‘𝐾)
cdleme4.m = (meet‘𝐾)
cdleme4.a 𝐴 = (Atoms‘𝐾)
cdleme4.h 𝐻 = (LHyp‘𝐾)
cdleme4.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme4.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme4.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐺 𝑊)

Proof of Theorem cdleme7
StepHypRef Expression
1 cdleme4.l . . 3 = (le‘𝐾)
2 cdleme4.j . . 3 = (join‘𝐾)
3 cdleme4.m . . 3 = (meet‘𝐾)
4 cdleme4.a . . 3 𝐴 = (Atoms‘𝐾)
5 cdleme4.h . . 3 𝐻 = (LHyp‘𝐾)
6 cdleme4.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme4.f . . 3 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
8 cdleme4.g . . 3 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
9 eqid 2651 . . 3 ((𝑅 𝑆) 𝑊) = ((𝑅 𝑆) 𝑊)
101, 2, 3, 4, 5, 6, 7, 8, 9cdleme7d 35851 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺𝑈)
11 simp11l 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
12 simp2ll 1148 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
131, 2, 3, 4, 5, 6, 7, 8cdleme7ga 35853 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺𝐴)
141, 2, 4hlatlej2 34980 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝐺𝐴) → 𝐺 (𝑅 𝐺))
1511, 12, 13, 14syl3anc 1366 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺 (𝑅 𝐺))
1615biantrurd 528 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺 𝑊 ↔ (𝐺 (𝑅 𝐺) ∧ 𝐺 𝑊)))
17 hllat 34968 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1811, 17syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ Lat)
19 eqid 2651 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 4atbase 34894 . . . . . . 7 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
2113, 20syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺 ∈ (Base‘𝐾))
2219, 2, 4hlatjcl 34971 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝐺𝐴) → (𝑅 𝐺) ∈ (Base‘𝐾))
2311, 12, 13, 22syl3anc 1366 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅 𝐺) ∈ (Base‘𝐾))
24 simp11r 1193 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑊𝐻)
2519, 5lhpbase 35602 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2624, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
2719, 1, 3latlem12 17125 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ (𝑅 𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝐺 (𝑅 𝐺) ∧ 𝐺 𝑊) ↔ 𝐺 ((𝑅 𝐺) 𝑊)))
2818, 21, 23, 26, 27syl13anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐺 (𝑅 𝐺) ∧ 𝐺 𝑊) ↔ 𝐺 ((𝑅 𝐺) 𝑊)))
29 simp11 1111 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp12l 1194 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝐴)
31 simp13l 1196 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑄𝐴)
32 simp2l 1107 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
33 simp2r 1108 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
34 simp32 1118 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
351, 2, 3, 4, 5, 6, 7, 8cdleme6 35846 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝐺) 𝑊) = 𝑈)
3629, 30, 31, 32, 33, 34, 35syl132anc 1384 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝐺) 𝑊) = 𝑈)
3736breq2d 4697 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺 ((𝑅 𝐺) 𝑊) ↔ 𝐺 𝑈))
3828, 37bitrd 268 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐺 (𝑅 𝐺) ∧ 𝐺 𝑊) ↔ 𝐺 𝑈))
39 hlatl 34965 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4011, 39syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ AtLat)
41 simp12 1112 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
42 simp31 1117 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝑄)
431, 2, 3, 4, 5, 6lhpat2 35649 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
4429, 41, 31, 42, 43syl112anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑈𝐴)
451, 4atcmp 34916 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝐺𝐴𝑈𝐴) → (𝐺 𝑈𝐺 = 𝑈))
4640, 13, 44, 45syl3anc 1366 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺 𝑈𝐺 = 𝑈))
4716, 38, 463bitrd 294 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺 𝑊𝐺 = 𝑈))
4847necon3bbid 2860 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (¬ 𝐺 𝑊𝐺𝑈))
4910, 48mpbird 247 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐺 𝑊)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  Latclat 17092  Atomscatm 34868  AtLatcal 34869  HLchlt 34955  LHypclh 35588 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592 This theorem is referenced by:  cdleme18a  35896  cdleme22f2  35952  cdlemefs32sn1aw  36019
 Copyright terms: Public domain W3C validator