Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9 Structured version   Visualization version   GIF version

Theorem cdleme9 36039
Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐶 and 𝐹 represent s1 and f(s) respectively. In their notation, we prove f(s) s1 = q s1. (Contributed by NM, 10-Jun-2012.)
Hypotheses
Ref Expression
cdleme9.l = (le‘𝐾)
cdleme9.j = (join‘𝐾)
cdleme9.m = (meet‘𝐾)
cdleme9.a 𝐴 = (Atoms‘𝐾)
cdleme9.h 𝐻 = (LHyp‘𝐾)
cdleme9.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme9.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme9.c 𝐶 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
cdleme9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐹 𝐶) = (𝑄 𝐶))

Proof of Theorem cdleme9
StepHypRef Expression
1 cdleme9.l . . . 4 = (le‘𝐾)
2 cdleme9.j . . . 4 = (join‘𝐾)
3 cdleme9.m . . . 4 = (meet‘𝐾)
4 cdleme9.a . . . 4 𝐴 = (Atoms‘𝐾)
5 cdleme9.h . . . 4 𝐻 = (LHyp‘𝐾)
6 cdleme9.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme9.f . . . 4 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
8 cdleme9.c . . . 4 𝐶 = ((𝑃 𝑆) 𝑊)
91, 2, 3, 4, 5, 6, 7, 8cdleme3d 36017 . . 3 𝐹 = ((𝑆 𝑈) (𝑄 𝐶))
109oveq1i 6819 . 2 (𝐹 𝐶) = (((𝑆 𝑈) (𝑄 𝐶)) 𝐶)
11 simp1l 1240 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐾 ∈ HL)
12 simp1 1131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simp21 1249 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
14 simp23l 1379 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝐴)
15 hllat 35149 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1611, 15syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐾 ∈ Lat)
17 eqid 2756 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1817, 4atbase 35075 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1914, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆 ∈ (Base‘𝐾))
20 simp21l 1375 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝐴)
2117, 4atbase 35075 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
23 simp22 1250 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑄𝐴)
2417, 4atbase 35075 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑄 ∈ (Base‘𝐾))
26 simp3 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 (𝑃 𝑄))
2717, 1, 2latnlej1l 17266 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝑃)
2827necomd 2983 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝑆)
2916, 19, 22, 25, 26, 28syl131anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝑆)
301, 2, 3, 4, 5, 8cdleme9a 36037 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴𝑃𝑆)) → 𝐶𝐴)
3112, 13, 14, 29, 30syl112anc 1481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐶𝐴)
321, 2, 3, 4, 5, 6, 17cdleme0aa 35996 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈 ∈ (Base‘𝐾))
3312, 20, 23, 32syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑈 ∈ (Base‘𝐾))
3417, 2latjcl 17248 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 𝑈) ∈ (Base‘𝐾))
3516, 19, 33, 34syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑆 𝑈) ∈ (Base‘𝐾))
3617, 2, 4hlatjcl 35152 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝐶𝐴) → (𝑄 𝐶) ∈ (Base‘𝐾))
3711, 23, 31, 36syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 𝐶) ∈ (Base‘𝐾))
381, 2, 4hlatlej2 35161 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝐶𝐴) → 𝐶 (𝑄 𝐶))
3911, 23, 31, 38syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐶 (𝑄 𝐶))
4017, 1, 2, 3, 4atmod4i1 35651 . . . 4 ((𝐾 ∈ HL ∧ (𝐶𝐴 ∧ (𝑆 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 𝐶) ∈ (Base‘𝐾)) ∧ 𝐶 (𝑄 𝐶)) → (((𝑆 𝑈) (𝑄 𝐶)) 𝐶) = (((𝑆 𝑈) 𝐶) (𝑄 𝐶)))
4111, 31, 35, 37, 39, 40syl131anc 1490 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (((𝑆 𝑈) (𝑄 𝐶)) 𝐶) = (((𝑆 𝑈) 𝐶) (𝑄 𝐶)))
4217, 2, 4hlatjcl 35152 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
4311, 20, 14, 42syl3anc 1477 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑆) ∈ (Base‘𝐾))
44 simp1r 1241 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑊𝐻)
4517, 5lhpbase 35783 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4644, 45syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑊 ∈ (Base‘𝐾))
471, 2, 4hlatlej2 35161 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑆 (𝑃 𝑆))
4811, 20, 14, 47syl3anc 1477 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆 (𝑃 𝑆))
4917, 1, 2, 3, 4atmod3i1 35649 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑆𝐴 ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑆 (𝑃 𝑆)) → (𝑆 ((𝑃 𝑆) 𝑊)) = ((𝑃 𝑆) (𝑆 𝑊)))
5011, 14, 43, 46, 48, 49syl131anc 1490 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑆 ((𝑃 𝑆) 𝑊)) = ((𝑃 𝑆) (𝑆 𝑊)))
51 simp23r 1380 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 𝑊)
52 eqid 2756 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
531, 2, 52, 4, 5lhpjat2 35806 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 𝑊) = (1.‘𝐾))
5412, 14, 51, 53syl12anc 1475 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑆 𝑊) = (1.‘𝐾))
5554oveq2d 6825 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑆) (𝑆 𝑊)) = ((𝑃 𝑆) (1.‘𝐾)))
56 hlol 35147 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
5711, 56syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐾 ∈ OL)
5817, 3, 52olm11 35013 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (1.‘𝐾)) = (𝑃 𝑆))
5957, 43, 58syl2anc 696 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑆) (1.‘𝐾)) = (𝑃 𝑆))
6050, 55, 593eqtrrd 2795 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑆) = (𝑆 ((𝑃 𝑆) 𝑊)))
618oveq2i 6820 . . . . . . 7 (𝑆 𝐶) = (𝑆 ((𝑃 𝑆) 𝑊))
6260, 61syl6reqr 2809 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑆 𝐶) = (𝑃 𝑆))
6362oveq1d 6824 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑆 𝐶) 𝑈) = ((𝑃 𝑆) 𝑈))
6417, 4atbase 35075 . . . . . . 7 (𝐶𝐴𝐶 ∈ (Base‘𝐾))
6531, 64syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐶 ∈ (Base‘𝐾))
6617, 2latj32 17294 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾))) → ((𝑆 𝑈) 𝐶) = ((𝑆 𝐶) 𝑈))
6716, 19, 33, 65, 66syl13anc 1479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑆 𝑈) 𝐶) = ((𝑆 𝐶) 𝑈))
682, 4hlatj32 35157 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑄𝐴)) → ((𝑃 𝑆) 𝑄) = ((𝑃 𝑄) 𝑆))
6911, 20, 14, 23, 68syl13anc 1479 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑆) 𝑄) = ((𝑃 𝑄) 𝑆))
7017, 2latjcom 17256 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑆) 𝑄))
7116, 25, 43, 70syl3anc 1477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑆) 𝑄))
726oveq2i 6820 . . . . . . . . 9 (𝑃 𝑈) = (𝑃 ((𝑃 𝑄) 𝑊))
7317, 2, 4hlatjcl 35152 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
7411, 20, 23, 73syl3anc 1477 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑄) ∈ (Base‘𝐾))
751, 2, 4hlatlej1 35160 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
7611, 20, 23, 75syl3anc 1477 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃 (𝑃 𝑄))
7717, 1, 2, 3, 4atmod3i1 35649 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑄)) → (𝑃 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑃 𝑊)))
7811, 20, 74, 46, 76, 77syl131anc 1490 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑃 𝑊)))
791, 2, 52, 4, 5lhpjat2 35806 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
8012, 13, 79syl2anc 696 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑊) = (1.‘𝐾))
8180oveq2d 6825 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑄) (𝑃 𝑊)) = ((𝑃 𝑄) (1.‘𝐾)))
8217, 3, 52olm11 35013 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
8357, 74, 82syl2anc 696 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
8478, 81, 833eqtrd 2794 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
8572, 84syl5eq 2802 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑈) = (𝑃 𝑄))
8685oveq1d 6824 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑈) 𝑆) = ((𝑃 𝑄) 𝑆))
8769, 71, 863eqtr4d 2800 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑈) 𝑆))
8817, 2latj32 17294 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 𝑈) 𝑆) = ((𝑃 𝑆) 𝑈))
8916, 22, 33, 19, 88syl13anc 1479 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑈) 𝑆) = ((𝑃 𝑆) 𝑈))
9087, 89eqtrd 2790 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑆) 𝑈))
9163, 67, 903eqtr4d 2800 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑆 𝑈) 𝐶) = (𝑄 (𝑃 𝑆)))
9291oveq1d 6824 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (((𝑆 𝑈) 𝐶) (𝑄 𝐶)) = ((𝑄 (𝑃 𝑆)) (𝑄 𝐶)))
9317, 1, 3latmle1 17273 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
9416, 43, 46, 93syl3anc 1477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
958, 94syl5eqbr 4835 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐶 (𝑃 𝑆))
9617, 1, 2latjlej2 17263 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐶 (𝑃 𝑆) → (𝑄 𝐶) (𝑄 (𝑃 𝑆))))
9716, 65, 43, 25, 96syl13anc 1479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐶 (𝑃 𝑆) → (𝑄 𝐶) (𝑄 (𝑃 𝑆))))
9895, 97mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 𝐶) (𝑄 (𝑃 𝑆)))
9917, 2latjcl 17248 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
10016, 25, 43, 99syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
10117, 1, 3latleeqm2 17277 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝐶) ∈ (Base‘𝐾) ∧ (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 𝐶) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 𝐶)) = (𝑄 𝐶)))
10216, 37, 100, 101syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑄 𝐶) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 𝐶)) = (𝑄 𝐶)))
10398, 102mpbid 222 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝐶)) = (𝑄 𝐶))
10441, 92, 1033eqtrd 2794 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (((𝑆 𝑈) (𝑄 𝐶)) 𝐶) = (𝑄 𝐶))
10510, 104syl5eq 2802 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐹 𝐶) = (𝑄 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  wne 2928   class class class wbr 4800  cfv 6045  (class class class)co 6809  Basecbs 16055  lecple 16146  joincjn 17141  meetcmee 17142  1.cp1 17235  Latclat 17242  OLcol 34960  Atomscatm 35049  HLchlt 35136  LHypclh 35769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-1st 7329  df-2nd 7330  df-preset 17125  df-poset 17143  df-plt 17155  df-lub 17171  df-glb 17172  df-join 17173  df-meet 17174  df-p0 17236  df-p1 17237  df-lat 17243  df-clat 17305  df-oposet 34962  df-ol 34964  df-oml 34965  df-covers 35052  df-ats 35053  df-atl 35084  df-cvlat 35108  df-hlat 35137  df-psubsp 35288  df-pmap 35289  df-padd 35581  df-lhyp 35773
This theorem is referenced by:  cdleme9tN  36043  cdleme17a  36072
  Copyright terms: Public domain W3C validator