Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemedb Structured version   Visualization version   GIF version

Theorem cdlemedb 35902
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 20-Nov-2012.)
Hypotheses
Ref Expression
cdlemeda.l = (le‘𝐾)
cdlemeda.j = (join‘𝐾)
cdlemeda.m = (meet‘𝐾)
cdlemeda.a 𝐴 = (Atoms‘𝐾)
cdlemeda.h 𝐻 = (LHyp‘𝐾)
cdlemeda.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdlemedb.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdlemedb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐷𝐵)

Proof of Theorem cdlemedb
StepHypRef Expression
1 cdlemeda.d . 2 𝐷 = ((𝑅 𝑆) 𝑊)
2 hllat 34968 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32ad2antrr 762 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
4 simpll 805 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
5 simprl 809 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
6 simprr 811 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
7 cdlemedb.b . . . . 5 𝐵 = (Base‘𝐾)
8 cdlemeda.j . . . . 5 = (join‘𝐾)
9 cdlemeda.a . . . . 5 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 34971 . . . 4 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ 𝐵)
114, 5, 6, 10syl3anc 1366 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 𝑆) ∈ 𝐵)
12 cdlemeda.h . . . . 5 𝐻 = (LHyp‘𝐾)
137, 12lhpbase 35602 . . . 4 (𝑊𝐻𝑊𝐵)
1413ad2antlr 763 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝑊𝐵)
15 cdlemeda.m . . . 4 = (meet‘𝐾)
167, 15latmcl 17099 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑅 𝑆) 𝑊) ∈ 𝐵)
173, 11, 14, 16syl3anc 1366 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑅 𝑆) 𝑊) ∈ 𝐵)
181, 17syl5eqel 2734 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐷𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  Latclat 17092  Atomscatm 34868  HLchlt 34955  LHypclh 35588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-lat 17093  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-lhyp 35592
This theorem is referenced by:  cdleme20k  35924  cdleme20l2  35926  cdleme20l  35927  cdleme20m  35928
  Copyright terms: Public domain W3C validator