Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf2 Structured version   Visualization version   GIF version

Theorem cdlemf2 35327
Description: Part of Lemma F in [Crawley] p. 116. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l = (le‘𝐾)
cdlemf1.j = (join‘𝐾)
cdlemf1.a 𝐴 = (Atoms‘𝐾)
cdlemf1.h 𝐻 = (LHyp‘𝐾)
cdlemf2.m = (meet‘𝐾)
Assertion
Ref Expression
cdlemf2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑈,𝑝,𝑞   𝑊,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem cdlemf2
StepHypRef Expression
1 cdlemf1.l . . . 4 = (le‘𝐾)
2 cdlemf1.a . . . 4 𝐴 = (Atoms‘𝐾)
3 cdlemf1.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexnle 34769 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
54adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
6 cdlemf1.j . . . . . . 7 = (join‘𝐾)
71, 6, 2, 3cdlemf1 35326 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ∃𝑞𝐴 (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))
8 simpr1r 1117 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ¬ 𝑝 𝑊)
9 simpr32 1150 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ¬ 𝑞 𝑊)
10 simpr33 1151 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 (𝑝 𝑞))
11 simplrr 800 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 𝑊)
12 hllat 34127 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1312ad3antrrr 765 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝐾 ∈ Lat)
14 simplrl 799 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈𝐴)
15 eqid 2621 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
1615, 2atbase 34053 . . . . . . . . . . . . . 14 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
1714, 16syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 ∈ (Base‘𝐾))
18 simplll 797 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝐾 ∈ HL)
19 simpr1l 1116 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑝𝐴)
20 simpr2 1066 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑞𝐴)
2115, 6, 2hlatjcl 34130 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
2218, 19, 20, 21syl3anc 1323 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → (𝑝 𝑞) ∈ (Base‘𝐾))
2315, 3lhpbase 34761 . . . . . . . . . . . . . 14 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2423ad3antlr 766 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑊 ∈ (Base‘𝐾))
25 cdlemf2.m . . . . . . . . . . . . . 14 = (meet‘𝐾)
2615, 1, 25latlem12 16999 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑈 (𝑝 𝑞) ∧ 𝑈 𝑊) ↔ 𝑈 ((𝑝 𝑞) 𝑊)))
2713, 17, 22, 24, 26syl13anc 1325 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ((𝑈 (𝑝 𝑞) ∧ 𝑈 𝑊) ↔ 𝑈 ((𝑝 𝑞) 𝑊)))
2810, 11, 27mpbi2and 955 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 ((𝑝 𝑞) 𝑊))
29 hlatl 34124 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3029ad3antrrr 765 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝐾 ∈ AtLat)
31 simpll 789 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpr31 1149 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑝𝑞)
331, 6, 25, 2, 3lhpat 34806 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴𝑝𝑞)) → ((𝑝 𝑞) 𝑊) ∈ 𝐴)
3431, 19, 8, 20, 32, 33syl122anc 1332 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ((𝑝 𝑞) 𝑊) ∈ 𝐴)
351, 2atcmp 34075 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑈𝐴 ∧ ((𝑝 𝑞) 𝑊) ∈ 𝐴) → (𝑈 ((𝑝 𝑞) 𝑊) ↔ 𝑈 = ((𝑝 𝑞) 𝑊)))
3630, 14, 34, 35syl3anc 1323 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → (𝑈 ((𝑝 𝑞) 𝑊) ↔ 𝑈 = ((𝑝 𝑞) 𝑊)))
3728, 36mpbid 222 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 = ((𝑝 𝑞) 𝑊))
388, 9, 37jca31 556 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
39383exp2 1282 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) → (𝑞𝐴 → ((𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))))
40393impia 1258 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝑞𝐴 → ((𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))))
4140reximdvai 3009 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (∃𝑞𝐴 (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)) → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))
427, 41mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
43423expia 1264 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))
4443expd 452 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (𝑝𝐴 → (¬ 𝑝 𝑊 → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))))
4544reximdvai 3009 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (∃𝑝𝐴 ¬ 𝑝 𝑊 → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))
465, 45mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  joincjn 16865  meetcmee 16866  Latclat 16966  Atomscatm 34027  AtLatcal 34028  HLchlt 34114  LHypclh 34747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33940  df-ol 33942  df-oml 33943  df-covers 34030  df-ats 34031  df-atl 34062  df-cvlat 34086  df-hlat 34115  df-lhyp 34751
This theorem is referenced by:  cdlemf  35328
  Copyright terms: Public domain W3C validator