Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17dALTN Structured version   Visualization version   GIF version

Theorem cdlemg17dALTN 35432
Description: Same as cdlemg17dN 35431 with fewer antecedents but longer proof TODO: fix comment. (Contributed by NM, 9-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg17dALTN (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) = ((𝑃 𝑄) 𝑊))

Proof of Theorem cdlemg17dALTN
StepHypRef Expression
1 simp3l 1087 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) (𝑃 𝑄))
2 simp11 1089 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
3 simp12 1090 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑊𝐻)
4 simp13 1091 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝐺𝑇)
5 cdlemg12.l . . . . 5 = (le‘𝐾)
6 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
95, 6, 7, 8trlle 34951 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
102, 3, 4, 9syl21anc 1322 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) 𝑊)
11 hllat 34130 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
122, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
13 eqid 2621 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 6, 7, 8trlcl 34931 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
152, 3, 4, 14syl21anc 1322 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ∈ (Base‘𝐾))
16 simp21l 1176 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑃𝐴)
17 simp22 1093 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑄𝐴)
18 cdlemg12.j . . . . . 6 = (join‘𝐾)
19 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2013, 18, 19hlatjcl 34133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
212, 16, 17, 20syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑃 𝑄) ∈ (Base‘𝐾))
2213, 6lhpbase 34764 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
233, 22syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑊 ∈ (Base‘𝐾))
24 cdlemg12.m . . . . 5 = (meet‘𝐾)
2513, 5, 24latlem12 16999 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅𝐺) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐺) 𝑊) ↔ (𝑅𝐺) ((𝑃 𝑄) 𝑊)))
2612, 15, 21, 23, 25syl13anc 1325 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (((𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐺) 𝑊) ↔ (𝑅𝐺) ((𝑃 𝑄) 𝑊)))
271, 10, 26mpbi2and 955 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ((𝑃 𝑄) 𝑊))
28 hlatl 34127 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
292, 28syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝐾 ∈ AtLat)
30 simp21 1092 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
31 simp3r 1088 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐺𝑃) ≠ 𝑃)
325, 19, 6, 7, 8trlat 34936 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑇 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ∈ 𝐴)
332, 3, 30, 4, 31, 32syl212anc 1333 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ∈ 𝐴)
34 simp23 1094 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑃𝑄)
355, 18, 24, 19, 6lhpat 34809 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
362, 3, 30, 17, 34, 35syl212anc 1333 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
375, 19atcmp 34078 . . 3 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ 𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → ((𝑅𝐺) ((𝑃 𝑄) 𝑊) ↔ (𝑅𝐺) = ((𝑃 𝑄) 𝑊)))
3829, 33, 36, 37syl3anc 1323 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → ((𝑅𝐺) ((𝑃 𝑄) 𝑊) ↔ (𝑅𝐺) = ((𝑃 𝑄) 𝑊)))
3927, 38mpbid 222 1 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) = ((𝑃 𝑄) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  joincjn 16865  meetcmee 16866  Latclat 16966  Atomscatm 34030  AtLatcal 34031  HLchlt 34117  LHypclh 34750  LTrncltrn 34867  trLctrl 34925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-lhyp 34754  df-laut 34755  df-ldil 34870  df-ltrn 34871  df-trl 34926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator