Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17h Structured version   Visualization version   GIF version

Theorem cdlemg17h 37686
Description: TODO: fix comment. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg17h ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆 = (𝐹𝑃) ∨ 𝑆 = (𝐹𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐺,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟   𝐹,𝑟   𝑆,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑇(𝑟)   𝐻(𝑟)   𝐾(𝑟)   (𝑟)

Proof of Theorem cdlemg17h
StepHypRef Expression
1 simp11l 1276 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
2 simp23r 1287 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑆 ((𝐹𝑃) (𝐹𝑄)))
3 simp11 1195 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp22l 1284 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐹𝑇)
5 simp21l 1282 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑆𝐴)
6 cdlemg12.l . . . . . . . . 9 = (le‘𝐾)
7 cdlemg12.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 cdlemg12.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 cdlemg12.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
106, 7, 8, 9ltrncnvat 37159 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑆𝐴) → (𝐹𝑆) ∈ 𝐴)
113, 4, 5, 10syl3anc 1363 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹𝑆) ∈ 𝐴)
12 eqid 2821 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1312, 7atbase 36307 . . . . . . 7 ((𝐹𝑆) ∈ 𝐴 → (𝐹𝑆) ∈ (Base‘𝐾))
1411, 13syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹𝑆) ∈ (Base‘𝐾))
15 simp12l 1278 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
16 simp13l 1280 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
17 cdlemg12.j . . . . . . . 8 = (join‘𝐾)
1812, 17, 7hlatjcl 36385 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
191, 15, 16, 18syl3anc 1363 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃 𝑄) ∈ (Base‘𝐾))
2012, 6, 8, 9ltrnle 37147 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐹𝑆) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝐹𝑆) (𝑃 𝑄) ↔ (𝐹‘(𝐹𝑆)) (𝐹‘(𝑃 𝑄))))
213, 4, 14, 19, 20syl112anc 1366 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑆) (𝑃 𝑄) ↔ (𝐹‘(𝐹𝑆)) (𝐹‘(𝑃 𝑄))))
2212, 8, 9ltrn1o 37142 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
233, 4, 22syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
2412, 7atbase 36307 . . . . . . . 8 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
255, 24syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑆 ∈ (Base‘𝐾))
26 f1ocnvfv2 7025 . . . . . . 7 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑆)) = 𝑆)
2723, 25, 26syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹‘(𝐹𝑆)) = 𝑆)
2812, 7atbase 36307 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2915, 28syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃 ∈ (Base‘𝐾))
3012, 7atbase 36307 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3116, 30syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄 ∈ (Base‘𝐾))
3212, 17, 8, 9ltrnj 37150 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐹‘(𝑃 𝑄)) = ((𝐹𝑃) (𝐹𝑄)))
333, 4, 29, 31, 32syl112anc 1366 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹‘(𝑃 𝑄)) = ((𝐹𝑃) (𝐹𝑄)))
3427, 33breq12d 5071 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹‘(𝐹𝑆)) (𝐹‘(𝑃 𝑄)) ↔ 𝑆 ((𝐹𝑃) (𝐹𝑄))))
3521, 34bitr2d 281 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆 ((𝐹𝑃) (𝐹𝑄)) ↔ (𝐹𝑆) (𝑃 𝑄)))
362, 35mpbid 233 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹𝑆) (𝑃 𝑄))
37 simp33 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
38 simp23l 1286 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
39 simp21 1198 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
406, 7, 8, 9ltrncnvel 37160 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ((𝐹𝑆) ∈ 𝐴 ∧ ¬ (𝐹𝑆) 𝑊))
413, 4, 39, 40syl3anc 1363 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑆) ∈ 𝐴 ∧ ¬ (𝐹𝑆) 𝑊))
426, 17, 7cdleme0nex 37308 . . 3 (((𝐾 ∈ HL ∧ (𝐹𝑆) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ ((𝐹𝑆) ∈ 𝐴 ∧ ¬ (𝐹𝑆) 𝑊)) → ((𝐹𝑆) = 𝑃 ∨ (𝐹𝑆) = 𝑄))
431, 36, 37, 15, 16, 38, 41, 42syl331anc 1387 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑆) = 𝑃 ∨ (𝐹𝑆) = 𝑄))
44 eqcom 2828 . . . 4 ((𝐹𝑃) = 𝑆𝑆 = (𝐹𝑃))
45 f1ocnvfvb 7027 . . . . 5 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝐹𝑃) = 𝑆 ↔ (𝐹𝑆) = 𝑃))
4623, 29, 25, 45syl3anc 1363 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑃) = 𝑆 ↔ (𝐹𝑆) = 𝑃))
4744, 46syl5rbbr 287 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑆) = 𝑃𝑆 = (𝐹𝑃)))
48 eqcom 2828 . . . 4 ((𝐹𝑄) = 𝑆𝑆 = (𝐹𝑄))
49 f1ocnvfvb 7027 . . . . 5 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝐹𝑄) = 𝑆 ↔ (𝐹𝑆) = 𝑄))
5023, 31, 25, 49syl3anc 1363 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑄) = 𝑆 ↔ (𝐹𝑆) = 𝑄))
5148, 50syl5rbbr 287 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑆) = 𝑄𝑆 = (𝐹𝑄)))
5247, 51orbi12d 912 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (((𝐹𝑆) = 𝑃 ∨ (𝐹𝑆) = 𝑄) ↔ (𝑆 = (𝐹𝑃) ∨ 𝑆 = (𝐹𝑄))))
5343, 52mpbid 233 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄𝑆 ((𝐹𝑃) (𝐹𝑄)))) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆 = (𝐹𝑃) ∨ 𝑆 = (𝐹𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3016  wrex 3139   class class class wbr 5058  ccnv 5548  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7145  Basecbs 16473  lecple 16562  joincjn 17544  meetcmee 17545  Atomscatm 36281  HLchlt 36368  LHypclh 37002  LTrncltrn 37119  trLctrl 37176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8398  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-lat 17646  df-oposet 36194  df-ol 36196  df-oml 36197  df-covers 36284  df-ats 36285  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-lhyp 37006  df-laut 37007  df-ldil 37122  df-ltrn 37123
This theorem is referenced by:  cdlemg17i  37687
  Copyright terms: Public domain W3C validator