Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg1cex Structured version   Visualization version   GIF version

Theorem cdlemg1cex 35353
 Description: Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 35328? (Contributed by NM, 17-Apr-2013.)
Hypotheses
Ref Expression
cdlemg1c.l = (le‘𝐾)
cdlemg1c.a 𝐴 = (Atoms‘𝐾)
cdlemg1c.h 𝐻 = (LHyp‘𝐾)
cdlemg1c.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg1cex ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))
Distinct variable groups:   𝑓,𝑝,𝑞,𝐴   𝑓,𝐹,𝑝,𝑞   𝑓,𝐻,𝑝,𝑞   𝑓,𝐾,𝑝,𝑞   ,𝑓,𝑝,𝑞   𝑇,𝑓,𝑝,𝑞   𝑓,𝑊,𝑝,𝑞

Proof of Theorem cdlemg1cex
StepHypRef Expression
1 cdlemg1c.l . . . . . . . 8 = (le‘𝐾)
2 cdlemg1c.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
3 cdlemg1c.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
4 cdlemg1c.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4ltrnel 34902 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ((𝐹𝑝) ∈ 𝐴 ∧ ¬ (𝐹𝑝) 𝑊))
653expa 1262 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ((𝐹𝑝) ∈ 𝐴 ∧ ¬ (𝐹𝑝) 𝑊))
76simpld 475 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝐹𝑝) ∈ 𝐴)
8 simprr 795 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ¬ 𝑝 𝑊)
96simprd 479 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ¬ (𝐹𝑝) 𝑊)
10 simpll 789 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simpr 477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
12 simplr 791 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → 𝐹𝑇)
131, 2, 3, 4cdlemeiota 35350 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))
1410, 11, 12, 13syl3anc 1323 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → 𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))
15 breq1 4616 . . . . . . . 8 (𝑞 = (𝐹𝑝) → (𝑞 𝑊 ↔ (𝐹𝑝) 𝑊))
1615notbid 308 . . . . . . 7 (𝑞 = (𝐹𝑝) → (¬ 𝑞 𝑊 ↔ ¬ (𝐹𝑝) 𝑊))
17 eqeq2 2632 . . . . . . . . 9 (𝑞 = (𝐹𝑝) → ((𝑓𝑝) = 𝑞 ↔ (𝑓𝑝) = (𝐹𝑝)))
1817riotabidv 6567 . . . . . . . 8 (𝑞 = (𝐹𝑝) → (𝑓𝑇 (𝑓𝑝) = 𝑞) = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))
1918eqeq2d 2631 . . . . . . 7 (𝑞 = (𝐹𝑝) → (𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞) ↔ 𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝))))
2016, 193anbi23d 1399 . . . . . 6 (𝑞 = (𝐹𝑝) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ (¬ 𝑝 𝑊 ∧ ¬ (𝐹𝑝) 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))))
2120rspcev 3295 . . . . 5 (((𝐹𝑝) ∈ 𝐴 ∧ (¬ 𝑝 𝑊 ∧ ¬ (𝐹𝑝) 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))) → ∃𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)))
227, 8, 9, 14, 21syl13anc 1325 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ∃𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)))
231, 2, 3lhpexnle 34769 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
2423adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
2522, 24reximddv 3012 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)))
2625ex 450 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 → ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))
27 simp1 1059 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp2l 1085 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → 𝑝𝐴)
29 simp31 1095 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → ¬ 𝑝 𝑊)
3028, 29jca 554 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
31 simp2r 1086 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → 𝑞𝐴)
32 simp32 1096 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → ¬ 𝑞 𝑊)
3331, 32jca 554 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
34 simp33 1097 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))
351, 2, 3, 4cdlemg1ci2 35351 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) → 𝐹𝑇)
3627, 30, 33, 34, 35syl31anc 1326 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → 𝐹𝑇)
37363exp 1261 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑝𝐴𝑞𝐴) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) → 𝐹𝑇)))
3837rexlimdvv 3030 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) → 𝐹𝑇))
3926, 38impbid 202 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∃wrex 2908   class class class wbr 4613  ‘cfv 5847  ℩crio 6564  lecple 15869  Atomscatm 34027  HLchlt 34114  LHypclh 34747  LTrncltrn 34864 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-riotaBAD 33716 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-undef 7344  df-map 7804  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33940  df-ol 33942  df-oml 33943  df-covers 34030  df-ats 34031  df-atl 34062  df-cvlat 34086  df-hlat 34115  df-llines 34261  df-lplanes 34262  df-lvols 34263  df-lines 34264  df-psubsp 34266  df-pmap 34267  df-padd 34559  df-lhyp 34751  df-laut 34752  df-ldil 34867  df-ltrn 34868  df-trl 34923 This theorem is referenced by:  cdlemg2cex  35356
 Copyright terms: Public domain W3C validator