Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31b Structured version   Visualization version   GIF version

Theorem cdlemg31b 36480
Description: TODO: fix comment. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg31b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑄 (𝑅𝐹)))

Proof of Theorem cdlemg31b
StepHypRef Expression
1 cdlemg31.n . 2 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
2 simp1l 1237 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝐾 ∈ HL)
3 hllat 35145 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝐾 ∈ Lat)
5 simp2l 1239 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑃𝐴)
6 simp3l 1241 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑣𝐴)
7 eqid 2752 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
8 cdlemg12.j . . . . 5 = (join‘𝐾)
9 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 35148 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
112, 5, 6, 10syl3anc 1473 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → (𝑃 𝑣) ∈ (Base‘𝐾))
12 simp2r 1240 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑄𝐴)
137, 9atbase 35071 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1412, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑄 ∈ (Base‘𝐾))
15 simp1 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simp3r 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝐹𝑇)
17 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
18 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
19 cdlemg12b.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
207, 17, 18, 19trlcl 35946 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
2115, 16, 20syl2anc 696 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → (𝑅𝐹) ∈ (Base‘𝐾))
227, 8latjcl 17244 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
234, 14, 21, 22syl3anc 1473 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
24 cdlemg12.l . . . 4 = (le‘𝐾)
25 cdlemg12.m . . . 4 = (meet‘𝐾)
267, 24, 25latmle2 17270 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑣) ∈ (Base‘𝐾) ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾)) → ((𝑃 𝑣) (𝑄 (𝑅𝐹))) (𝑄 (𝑅𝐹)))
274, 11, 23, 26syl3anc 1473 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → ((𝑃 𝑣) (𝑄 (𝑅𝐹))) (𝑄 (𝑅𝐹)))
281, 27syl5eqbr 4831 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑄 (𝑅𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131   class class class wbr 4796  cfv 6041  (class class class)co 6805  Basecbs 16051  lecple 16142  joincjn 17137  meetcmee 17138  Latclat 17238  Atomscatm 35045  HLchlt 35132  LHypclh 35765  LTrncltrn 35882  trLctrl 35940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-map 8017  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-p1 17233  df-lat 17239  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-lhyp 35769  df-laut 35770  df-ldil 35885  df-ltrn 35886  df-trl 35941
This theorem is referenced by:  cdlemg31c  36481  cdlemg31d  36482
  Copyright terms: Public domain W3C validator