Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31b0N Structured version   Visualization version   GIF version

Theorem cdlemg31b0N 35501
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg31b0N (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑁𝐴𝑁 = (0.‘𝐾)))

Proof of Theorem cdlemg31b0N
StepHypRef Expression
1 simp11 1089 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
2 simp2ll 1126 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
3 simp31l 1182 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣𝐴)
4 simp2rl 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄𝐴)
5 simp12 1090 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑊𝐻)
61, 5jca 554 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2l 1085 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp13 1091 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
9 simp33 1097 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
10 cdlemg12.l . . . . 5 = (le‘𝐾)
11 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
12 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
13 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1510, 11, 12, 13, 14trlat 34975 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
166, 7, 8, 9, 15syl112anc 1327 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
17 simp2r 1086 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
1810, 12, 13, 14trlle 34990 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
196, 8, 18syl2anc 692 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
2016, 19jca 554 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊))
21 simp31 1095 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑣𝐴𝑣 𝑊))
22 simp32 1096 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣 ≠ (𝑅𝐹))
2322necomd 2845 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ≠ 𝑣)
24 cdlemg12.j . . . . . 6 = (join‘𝐾)
2510, 24, 11, 12lhp2atne 34839 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝐴) ∧ (((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑅𝐹) ≠ 𝑣) → (𝑄 (𝑅𝐹)) ≠ (𝑃 𝑣))
266, 17, 2, 20, 21, 23, 25syl321anc 1345 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ≠ (𝑃 𝑣))
2726necomd 2845 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑣) ≠ (𝑄 (𝑅𝐹)))
28 cdlemg12.m . . . 4 = (meet‘𝐾)
29 eqid 2621 . . . 4 (0.‘𝐾) = (0.‘𝐾)
3024, 28, 29, 112atmat0 34331 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) ∧ (𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴 ∧ (𝑃 𝑣) ≠ (𝑄 (𝑅𝐹)))) → (((𝑃 𝑣) (𝑄 (𝑅𝐹))) ∈ 𝐴 ∨ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) = (0.‘𝐾)))
311, 2, 3, 4, 16, 27, 30syl33anc 1338 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (((𝑃 𝑣) (𝑄 (𝑅𝐹))) ∈ 𝐴 ∨ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) = (0.‘𝐾)))
32 cdlemg31.n . . . 4 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
3332eleq1i 2689 . . 3 (𝑁𝐴 ↔ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) ∈ 𝐴)
3432eqeq1i 2626 . . 3 (𝑁 = (0.‘𝐾) ↔ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) = (0.‘𝐾))
3533, 34orbi12i 543 . 2 ((𝑁𝐴𝑁 = (0.‘𝐾)) ↔ (((𝑃 𝑣) (𝑄 (𝑅𝐹))) ∈ 𝐴 ∨ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) = (0.‘𝐾)))
3631, 35sylibr 224 1 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑁𝐴𝑁 = (0.‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4623  cfv 5857  (class class class)co 6615  lecple 15888  joincjn 16884  meetcmee 16885  0.cp0 16977  Atomscatm 34069  HLchlt 34156  LHypclh 34789  LTrncltrn 34906  trLctrl 34964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-map 7819  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-p1 16980  df-lat 16986  df-clat 17048  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157  df-llines 34303  df-psubsp 34308  df-pmap 34309  df-padd 34601  df-lhyp 34793  df-laut 34794  df-ldil 34909  df-ltrn 34910  df-trl 34965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator