Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31c Structured version   Visualization version   GIF version

Theorem cdlemg31c 37715
Description: Show that when 𝑁 is an atom, it is not under 𝑊. TODO: Is there a shorter direct proof? TODO: should we eliminate (𝐹𝑃) ≠ 𝑃 here? (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg31c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑁 𝑊)

Proof of Theorem cdlemg31c
StepHypRef Expression
1 simp11l 1276 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝐾 ∈ HL)
2 simp11r 1277 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑊𝐻)
31, 2jca 512 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp13 1197 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp31 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑣 ≠ (𝑅𝐹))
65necomd 3068 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) ≠ 𝑣)
7 simp12 1196 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp2r 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝐹𝑇)
9 simp32 1202 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝐹𝑃) ≠ 𝑃)
10 cdlemg12.l . . . . 5 = (le‘𝐾)
11 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
12 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
13 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1510, 11, 12, 13, 14trlat 37185 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
163, 7, 8, 9, 15syl112anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) ∈ 𝐴)
1710, 12, 13, 14trlle 37200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
183, 8, 17syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) 𝑊)
19 simp2l 1191 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑣𝐴𝑣 𝑊))
20 cdlemg12.j . . . 4 = (join‘𝐾)
2110, 20, 11, 12lhp2atnle 37049 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐹) ≠ 𝑣) ∧ ((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) → ¬ 𝑣 (𝑄 (𝑅𝐹)))
223, 4, 6, 16, 18, 19, 21syl321anc 1384 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑣 (𝑄 (𝑅𝐹)))
23 simp12l 1278 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑃𝐴)
24 simp13l 1280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑄𝐴)
25 simp2ll 1232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑣𝐴)
26 cdlemg12.m . . . . . . 7 = (meet‘𝐾)
27 cdlemg31.n . . . . . . 7 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
2810, 20, 26, 11, 12, 13, 14, 27cdlemg31a 37713 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑃 𝑣))
291, 2, 23, 24, 25, 8, 28syl222anc 1378 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑁 (𝑃 𝑣))
3029adantr 481 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 (𝑃 𝑣))
31 simp111 1294 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simp112 1295 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
33 simp3 1130 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁𝑣)
3433necomd 3068 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑣𝑁)
35 simp12l 1278 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝑣𝐴𝑣 𝑊))
36 simp133 1302 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁𝐴)
37 simp2 1129 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁 𝑊)
3810, 20, 11, 12lhp2atnle 37049 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑣𝑁) ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝑁𝐴𝑁 𝑊)) → ¬ 𝑁 (𝑃 𝑣))
3931, 32, 34, 35, 36, 37, 38syl312anc 1383 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → ¬ 𝑁 (𝑃 𝑣))
40393expia 1113 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → (𝑁𝑣 → ¬ 𝑁 (𝑃 𝑣)))
4140necon4ad 3032 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → (𝑁 (𝑃 𝑣) → 𝑁 = 𝑣))
4230, 41mpd 15 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 = 𝑣)
4310, 20, 26, 11, 12, 13, 14, 27cdlemg31b 37714 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑄 (𝑅𝐹)))
441, 2, 23, 24, 25, 8, 43syl222anc 1378 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑁 (𝑄 (𝑅𝐹)))
4544adantr 481 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 (𝑄 (𝑅𝐹)))
4642, 45eqbrtrrd 5081 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑣 (𝑄 (𝑅𝐹)))
4722, 46mtand 812 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑁 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013   class class class wbr 5057  cfv 6348  (class class class)co 7145  lecple 16560  joincjn 17542  meetcmee 17543  Atomscatm 36279  HLchlt 36366  LHypclh 37000  LTrncltrn 37117  trLctrl 37174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-map 8397  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-p1 17638  df-lat 17644  df-clat 17706  df-oposet 36192  df-ol 36194  df-oml 36195  df-covers 36282  df-ats 36283  df-atl 36314  df-cvlat 36338  df-hlat 36367  df-psubsp 36519  df-pmap 36520  df-padd 36812  df-lhyp 37004  df-laut 37005  df-ldil 37120  df-ltrn 37121  df-trl 37175
This theorem is referenced by:  cdlemg31d  37716
  Copyright terms: Public domain W3C validator