Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33 Structured version   Visualization version   GIF version

Theorem cdlemg33 35818
Description: Combine cdlemg33b 35814, cdlemg33c 35815, cdlemg33d 35816, cdlemg33e 35817. TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
cdlemg33.o 𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))
Assertion
Ref Expression
cdlemg33 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
Distinct variable groups:   𝐴,𝑟   𝐺,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟   𝐹,𝑟   𝑧,𝐴   𝑧,𝐹,𝑟   𝐻,𝑟,𝑧   𝑧,   𝐾,𝑟,𝑧   𝑧,   𝑁,𝑟,𝑧   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑇   𝑧,𝑊   𝑧,𝑣,𝑟   𝑧,𝐺   𝑧,𝑂,𝑟
Allowed substitution hints:   𝐴(𝑣)   𝑃(𝑣)   𝑄(𝑣)   𝑅(𝑣,𝑟)   𝑇(𝑣,𝑟)   𝐹(𝑣)   𝐺(𝑣)   𝐻(𝑣)   (𝑣)   𝐾(𝑣)   (𝑣)   (𝑧,𝑣,𝑟)   𝑁(𝑣)   𝑂(𝑣)   𝑊(𝑣)

Proof of Theorem cdlemg33
StepHypRef Expression
1 simp11 1089 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1090 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1091 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp21 1092 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑣𝐴𝑣 𝑊))
5 simp22l 1178 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐹𝑇)
6 simp31 1095 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 ≠ (𝑅𝐹))
7 cdlemg12.l . . . 4 = (le‘𝐾)
8 cdlemg12.j . . . 4 = (join‘𝐾)
9 cdlemg12.m . . . 4 = (meet‘𝐾)
10 cdlemg12.a . . . 4 𝐴 = (Atoms‘𝐾)
11 cdlemg12.h . . . 4 𝐻 = (LHyp‘𝐾)
12 cdlemg12.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemg12b.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdlemg31.n . . . 4 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
157, 8, 9, 10, 11, 12, 13, 14cdlemg31b0a 35802 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹))) → (𝑁𝐴𝑁 = (0.‘𝐾)))
161, 2, 3, 4, 5, 6, 15syl132anc 1342 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁𝐴𝑁 = (0.‘𝐾)))
17 simp22r 1179 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺𝑇)
18 simp32 1096 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 ≠ (𝑅𝐺))
19 cdlemg33.o . . . 4 𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))
207, 8, 9, 10, 11, 12, 13, 19cdlemg31b0a 35802 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐺𝑇𝑣 ≠ (𝑅𝐺))) → (𝑂𝐴𝑂 = (0.‘𝐾)))
211, 2, 3, 4, 17, 18, 20syl132anc 1342 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑂𝐴𝑂 = (0.‘𝐾)))
22 simpl1 1062 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂𝐴)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
23 simpl21 1137 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂𝐴)) → (𝑣𝐴𝑣 𝑊))
24 simpr 477 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂𝐴)) → (𝑁𝐴𝑂𝐴))
25 simpl22 1138 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂𝐴)) → (𝐹𝑇𝐺𝑇))
26 simpl23 1139 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂𝐴)) → 𝑃𝑄)
27 simpl31 1140 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂𝐴)) → 𝑣 ≠ (𝑅𝐹))
28 simpl33 1142 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂𝐴)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
297, 8, 9, 10, 11, 12, 13, 14, 19cdlemg33b 35814 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑁𝐴𝑂𝐴) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
3022, 23, 24, 25, 26, 27, 28, 29syl133anc 1347 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂𝐴)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
3130ex 450 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑁𝐴𝑂𝐴) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)))))
32 simpl1 1062 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
33 simpl21 1137 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴)) → (𝑣𝐴𝑣 𝑊))
34 simpr 477 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴)) → (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴))
35 simpl22 1138 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴)) → (𝐹𝑇𝐺𝑇))
36 simpl23 1139 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴)) → 𝑃𝑄)
37 simpl32 1141 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴)) → 𝑣 ≠ (𝑅𝐺))
38 simpl33 1142 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
397, 8, 9, 10, 11, 12, 13, 14, 19cdlemg33d 35816 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
4032, 33, 34, 35, 36, 37, 38, 39syl133anc 1347 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
4140ex 450 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑁 = (0.‘𝐾) ∧ 𝑂𝐴) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)))))
42 simpl1 1062 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂 = (0.‘𝐾))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
43 simpl21 1137 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂 = (0.‘𝐾))) → (𝑣𝐴𝑣 𝑊))
44 simpr 477 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂 = (0.‘𝐾))) → (𝑁𝐴𝑂 = (0.‘𝐾)))
45 simpl22 1138 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂 = (0.‘𝐾))) → (𝐹𝑇𝐺𝑇))
46 simpl23 1139 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂 = (0.‘𝐾))) → 𝑃𝑄)
47 simpl31 1140 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂 = (0.‘𝐾))) → 𝑣 ≠ (𝑅𝐹))
48 simpl33 1142 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂 = (0.‘𝐾))) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
497, 8, 9, 10, 11, 12, 13, 14, 19cdlemg33c 35815 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑁𝐴𝑂 = (0.‘𝐾)) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
5042, 43, 44, 45, 46, 47, 48, 49syl133anc 1347 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁𝐴𝑂 = (0.‘𝐾))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
5150ex 450 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑁𝐴𝑂 = (0.‘𝐾)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)))))
52 simpl1 1062 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
53 simpl21 1137 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾))) → (𝑣𝐴𝑣 𝑊))
54 simpr 477 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾))) → (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾)))
55 simpl22 1138 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾))) → (𝐹𝑇𝐺𝑇))
56 simpl23 1139 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾))) → 𝑃𝑄)
57 simpl31 1140 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾))) → 𝑣 ≠ (𝑅𝐹))
58 simpl33 1142 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾))) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
597, 8, 9, 10, 11, 12, 13, 14, 19cdlemg33e 35817 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾)) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
6052, 53, 54, 55, 56, 57, 58, 59syl133anc 1347 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
6160ex 450 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)))))
6231, 41, 51, 61ccased 987 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (((𝑁𝐴𝑁 = (0.‘𝐾)) ∧ (𝑂𝐴𝑂 = (0.‘𝐾))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣)))))
6316, 21, 62mp2and 714 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wrex 2910   class class class wbr 4644  cfv 5876  (class class class)co 6635  lecple 15929  joincjn 16925  meetcmee 16926  0.cp0 17018  Atomscatm 34369  HLchlt 34456  LHypclh 35089  LTrncltrn 35206  trLctrl 35264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-map 7844  df-preset 16909  df-poset 16927  df-plt 16939  df-lub 16955  df-glb 16956  df-join 16957  df-meet 16958  df-p0 17020  df-p1 17021  df-lat 17027  df-clat 17089  df-oposet 34282  df-ol 34284  df-oml 34285  df-covers 34372  df-ats 34373  df-atl 34404  df-cvlat 34428  df-hlat 34457  df-llines 34603  df-lplanes 34604  df-psubsp 34608  df-pmap 34609  df-padd 34901  df-lhyp 35093  df-laut 35094  df-ldil 35209  df-ltrn 35210  df-trl 35265
This theorem is referenced by:  cdlemg34  35819
  Copyright terms: Public domain W3C validator