Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4 Structured version   Visualization version   GIF version

Theorem cdlemg4 35420
Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑄)) = 𝑄)

Proof of Theorem cdlemg4
StepHypRef Expression
1 cdlemg4.l . . 3 = (le‘𝐾)
2 cdlemg4.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdlemg4.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdlemg4.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdlemg4.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
6 cdlemg4.j . . 3 = (join‘𝐾)
7 cdlemg4b.v . . 3 𝑉 = (𝑅𝐺)
8 eqid 2621 . . 3 (meet‘𝐾) = (meet‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8cdlemg4g 35419 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑄)) = ((𝑄 𝑉)(meet‘𝐾)(𝑃 𝑄)))
10 simp1l 1083 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ HL)
11 simp21l 1176 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑃𝐴)
12 simp22l 1178 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑄𝐴)
136, 2hlatjcom 34169 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
1410, 11, 12, 13syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 𝑄) = (𝑄 𝑃))
1514oveq2d 6626 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑄 𝑉)(meet‘𝐾)(𝑃 𝑄)) = ((𝑄 𝑉)(meet‘𝐾)(𝑄 𝑃)))
16 simp1 1059 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simp31 1095 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐺𝑇)
18 eqid 2621 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1918, 3, 4, 5trlcl 34966 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
2016, 17, 19syl2anc 692 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑅𝐺) ∈ (Base‘𝐾))
217, 20syl5eqel 2702 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑉 ∈ (Base‘𝐾))
22 simp32 1096 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑄 (𝑃 𝑉))
23 simp21r 1177 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑃 𝑊)
24 simp21 1092 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
251, 6, 8, 2, 3, 4, 5trlval2 34965 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
2616, 17, 24, 25syl3anc 1323 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
277, 26syl5eq 2667 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑉 = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
28 hllat 34165 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2910, 28syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ Lat)
301, 2, 3, 4ltrnel 34940 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
3116, 17, 24, 30syl3anc 1323 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
3231simpld 475 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐺𝑃) ∈ 𝐴)
3318, 6, 2hlatjcl 34168 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
3410, 11, 32, 33syl3anc 1323 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
35 simp1r 1084 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑊𝐻)
3618, 3lhpbase 34799 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3735, 36syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑊 ∈ (Base‘𝐾))
3818, 1, 8latmle2 17009 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊) 𝑊)
3929, 34, 37, 38syl3anc 1323 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊) 𝑊)
4027, 39eqbrtrd 4640 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑉 𝑊)
4118, 2atbase 34091 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4211, 41syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑃 ∈ (Base‘𝐾))
4318, 1lattr 16988 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑉𝑉 𝑊) → 𝑃 𝑊))
4429, 42, 21, 37, 43syl13anc 1325 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑃 𝑉𝑉 𝑊) → 𝑃 𝑊))
4540, 44mpan2d 709 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 𝑉𝑃 𝑊))
4623, 45mtod 189 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑃 𝑉)
4718, 1, 6, 2hlexch2 34184 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑉 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 𝑉) → (𝑃 (𝑄 𝑉) → 𝑄 (𝑃 𝑉)))
4810, 11, 12, 21, 46, 47syl131anc 1336 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 (𝑄 𝑉) → 𝑄 (𝑃 𝑉)))
4922, 48mtod 189 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑃 (𝑄 𝑉))
5018, 1, 6, 8, 22llnma1b 34587 . . 3 ((𝐾 ∈ HL ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑄𝐴𝑃𝐴) ∧ ¬ 𝑃 (𝑄 𝑉)) → ((𝑄 𝑉)(meet‘𝐾)(𝑄 𝑃)) = 𝑄)
5110, 21, 12, 11, 49, 50syl131anc 1336 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑄 𝑉)(meet‘𝐾)(𝑄 𝑃)) = 𝑄)
529, 15, 513eqtrd 2659 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑄)) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4618  cfv 5852  (class class class)co 6610  Basecbs 15792  lecple 15880  joincjn 16876  meetcmee 16877  Latclat 16977  Atomscatm 34065  HLchlt 34152  LHypclh 34785  LTrncltrn 34902  trLctrl 34960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-riotaBAD 33754
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-undef 7351  df-map 7811  df-preset 16860  df-poset 16878  df-plt 16890  df-lub 16906  df-glb 16907  df-join 16908  df-meet 16909  df-p0 16971  df-p1 16972  df-lat 16978  df-clat 17040  df-oposet 33978  df-ol 33980  df-oml 33981  df-covers 34068  df-ats 34069  df-atl 34100  df-cvlat 34124  df-hlat 34153  df-llines 34299  df-lplanes 34300  df-lvols 34301  df-lines 34302  df-psubsp 34304  df-pmap 34305  df-padd 34597  df-lhyp 34789  df-laut 34790  df-ldil 34905  df-ltrn 34906  df-trl 34961
This theorem is referenced by:  cdlemg6a  35421  cdlemg6b  35422  cdlemg6  35426
  Copyright terms: Public domain W3C validator