Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44b Structured version   Visualization version   GIF version

Theorem cdlemg44b 35535
Description: Eliminate (𝐹𝑃) ≠ 𝑃, (𝐺𝑃) ≠ 𝑃 from cdlemg44a 35534. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h 𝐻 = (LHyp‘𝐾)
cdlemg44.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg44.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg44.l = (le‘𝐾)
cdlemg44.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemg44b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))

Proof of Theorem cdlemg44b
StepHypRef Expression
1 simpl1 1062 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl21 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
3 simpl23 1139 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simpl22 1138 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → 𝐺𝑇)
5 cdlemg44.l . . . . . 6 = (le‘𝐾)
6 cdlemg44.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 cdlemg44.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 cdlemg44.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnel 34940 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
101, 4, 3, 9syl3anc 1323 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
11 simpr 477 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
125, 6, 7, 8ltrnateq 34983 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺𝑃))
131, 2, 3, 10, 11, 12syl131anc 1336 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺𝑃))
1411fveq2d 6157 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐺‘(𝐹𝑃)) = (𝐺𝑃))
1513, 14eqtr4d 2658 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
16 simpr 477 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐺𝑃) = 𝑃)
1716fveq2d 6157 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐹𝑃))
18 simpl1 1062 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl22 1138 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → 𝐺𝑇)
20 simpl23 1139 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 simpl21 1137 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → 𝐹𝑇)
225, 6, 7, 8ltrnel 34940 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
2318, 21, 20, 22syl3anc 1323 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
245, 6, 7, 8ltrnateq 34983 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) ∧ (𝐺𝑃) = 𝑃) → (𝐺‘(𝐹𝑃)) = (𝐹𝑃))
2518, 19, 20, 23, 16, 24syl131anc 1336 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐺‘(𝐹𝑃)) = (𝐹𝑃))
2617, 25eqtr4d 2658 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
27 simpl1 1062 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simpl2 1063 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)))
29 simprl 793 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
30 simprr 795 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐺𝑃) ≠ 𝑃)
31 simpl3 1064 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐹) ≠ (𝑅𝐺))
32 cdlemg44.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
337, 8, 32, 5, 6cdlemg44a 35534 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
3427, 28, 29, 30, 31, 33syl113anc 1335 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
3515, 26, 34pm2.61da2ne 2878 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618  cfv 5852  lecple 15880  Atomscatm 34065  HLchlt 34152  LHypclh 34785  LTrncltrn 34902  trLctrl 34960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-map 7811  df-preset 16860  df-poset 16878  df-plt 16890  df-lub 16906  df-glb 16907  df-join 16908  df-meet 16909  df-p0 16971  df-p1 16972  df-lat 16978  df-clat 17040  df-oposet 33978  df-ol 33980  df-oml 33981  df-covers 34068  df-ats 34069  df-atl 34100  df-cvlat 34124  df-hlat 34153  df-llines 34299  df-psubsp 34304  df-pmap 34305  df-padd 34597  df-lhyp 34789  df-laut 34790  df-ldil 34905  df-ltrn 34906  df-trl 34961
This theorem is referenced by:  cdlemg44  35536
  Copyright terms: Public domain W3C validator