Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg46 Structured version   Visualization version   GIF version

Theorem cdlemg46 36523
Description: Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg46.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg46 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝐾   𝑅,   𝑇,   ,𝑊
Allowed substitution hint:   𝐵()

Proof of Theorem cdlemg46
StepHypRef Expression
1 simpl1l 1279 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
2 simp1 1131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2r 1243 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝑇)
4 simp32 1253 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ≠ ( I ↾ 𝐵))
5 cdlemg46.b . . . . . 6 𝐵 = (Base‘𝐾)
6 eqid 2758 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
7 cdlemg46.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 cdlemg46.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemg46.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
105, 6, 7, 8, 9trlnidat 35961 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → (𝑅) ∈ (Atoms‘𝐾))
112, 3, 4, 10syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ∈ (Atoms‘𝐾))
1211adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ∈ (Atoms‘𝐾))
13 simp2l 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
14 simp31 1252 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹 ≠ ( I ↾ 𝐵))
155, 6, 7, 8, 9trlnidat 35961 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
162, 13, 14, 15syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
1716adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
18 simpl33 1331 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ≠ (𝑅𝐹))
19 simpr 479 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ∈ (Atoms‘𝐾))
207, 8ltrnco 36507 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐹𝑇) → (𝐹) ∈ 𝑇)
212, 3, 13, 20syl3anc 1477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹) ∈ 𝑇)
227, 8ltrncnv 35933 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
232, 13, 22syl2anc 696 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
24 eqid 2758 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
25 eqid 2758 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
2624, 25, 7, 8, 9trlco 36515 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹) ∈ 𝑇𝐹𝑇) → (𝑅‘((𝐹) ∘ 𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
272, 21, 23, 26syl3anc 1477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘((𝐹) ∘ 𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
28 coass 5813 . . . . . . . 8 ((𝐹) ∘ 𝐹) = ( ∘ (𝐹𝐹))
295, 7, 8ltrn1o 35911 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
302, 13, 29syl2anc 696 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹:𝐵1-1-onto𝐵)
31 f1ococnv2 6322 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
3230, 31syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐹) = ( I ↾ 𝐵))
3332coeq2d 5438 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐹)) = ( ∘ ( I ↾ 𝐵)))
345, 7, 8ltrn1o 35911 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇) → :𝐵1-1-onto𝐵)
352, 3, 34syl2anc 696 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → :𝐵1-1-onto𝐵)
36 f1of 6296 . . . . . . . . . 10 (:𝐵1-1-onto𝐵:𝐵𝐵)
37 fcoi1 6237 . . . . . . . . . 10 (:𝐵𝐵 → ( ∘ ( I ↾ 𝐵)) = )
3835, 36, 373syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( I ↾ 𝐵)) = )
3933, 38eqtrd 2792 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐹)) = )
4028, 39syl5eq 2804 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐹) = )
4140fveq2d 6354 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘((𝐹) ∘ 𝐹)) = (𝑅))
427, 8, 9trlcnv 35953 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
432, 13, 42syl2anc 696 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝐹))
4443oveq2d 6827 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) = ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4527, 41, 443brtr3d 4833 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4645adantr 472 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4724, 25, 6hlatlej2 35163 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
481, 19, 17, 47syl3anc 1477 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
49 hllat 35151 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
501, 49syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
515, 6atbase 35077 . . . . . 6 ((𝑅) ∈ (Atoms‘𝐾) → (𝑅) ∈ 𝐵)
5212, 51syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ∈ 𝐵)
535, 6atbase 35077 . . . . . 6 ((𝑅𝐹) ∈ (Atoms‘𝐾) → (𝑅𝐹) ∈ 𝐵)
5417, 53syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ 𝐵)
555, 25, 6hlatjcl 35154 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)
561, 19, 17, 55syl3anc 1477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)
575, 24, 25latjle12 17261 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑅) ∈ 𝐵 ∧ (𝑅𝐹) ∈ 𝐵 ∧ ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)) → (((𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∧ (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))) ↔ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))))
5850, 52, 54, 56, 57syl13anc 1479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (((𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∧ (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))) ↔ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))))
5946, 48, 58mpbi2and 994 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
6024, 25, 62atjlej 35266 . . 3 ((𝐾 ∈ HL ∧ ((𝑅) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅) ≠ (𝑅𝐹)) ∧ ((𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
611, 12, 17, 18, 19, 17, 59, 60syl133anc 1500 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
62 nelne2 3027 . . . 4 (((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹)))
6362necomd 2985 . . 3 (((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
6416, 63sylan 489 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
6561, 64pm2.61dan 867 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wcel 2137  wne 2930   class class class wbr 4802   I cid 5171  ccnv 5263  cres 5266  ccom 5268  wf 6043  1-1-ontowf1o 6046  cfv 6047  (class class class)co 6811  Basecbs 16057  lecple 16148  joincjn 17143  Latclat 17244  Atomscatm 35051  HLchlt 35138  LHypclh 35771  LTrncltrn 35888  trLctrl 35946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-riotaBAD 34740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-1st 7331  df-2nd 7332  df-undef 7566  df-map 8023  df-preset 17127  df-poset 17145  df-plt 17157  df-lub 17173  df-glb 17174  df-join 17175  df-meet 17176  df-p0 17238  df-p1 17239  df-lat 17245  df-clat 17307  df-oposet 34964  df-ol 34966  df-oml 34967  df-covers 35054  df-ats 35055  df-atl 35086  df-cvlat 35110  df-hlat 35139  df-llines 35285  df-lplanes 35286  df-lvols 35287  df-lines 35288  df-psubsp 35290  df-pmap 35291  df-padd 35583  df-lhyp 35775  df-laut 35776  df-ldil 35891  df-ltrn 35892  df-trl 35947
This theorem is referenced by:  cdlemg47  36524
  Copyright terms: Public domain W3C validator