Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg47 Structured version   Visualization version   GIF version

Theorem cdlemg47 37752
Description: Part of proof of Lemma G of [Crawley] p. 116, ninth line of third paragraph on p. 117: "we conclude that gf = fg." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg46.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg47 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝐾   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   𝐵()   𝐺()

Proof of Theorem cdlemg47
StepHypRef Expression
1 simp11 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1191 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝑇)
3 simp12 1196 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
4 cdlemg46.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
5 cdlemg46.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrnco 37735 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐹𝑇) → (𝐹) ∈ 𝑇)
71, 2, 3, 6syl3anc 1363 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹) ∈ 𝑇)
8 simp13 1197 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐺𝑇)
9 simp3 1130 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹)))
10 cdlemg46.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
11 cdlemg46.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
1210, 4, 5, 11cdlemg46 37751 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
131, 3, 2, 9, 12syl121anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
14 simp2r 1192 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝐺))
1513, 14neeqtrd 3082 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐺))
164, 5, 11cdlemg44 37749 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹) ∈ 𝑇𝐺𝑇) ∧ (𝑅‘(𝐹)) ≠ (𝑅𝐺)) → ((𝐹) ∘ 𝐺) = (𝐺 ∘ (𝐹)))
171, 7, 8, 15, 16syl121anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐺) = (𝐺 ∘ (𝐹)))
18 coass 6111 . . . . . 6 ((𝐺) ∘ 𝐹) = (𝐺 ∘ (𝐹))
1917, 18syl6eqr 2871 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐺) = ((𝐺) ∘ 𝐹))
20 simp33 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ≠ (𝑅𝐹))
2120, 14neeqtrd 3082 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ≠ (𝑅𝐺))
224, 5, 11cdlemg44 37749 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐺𝑇) ∧ (𝑅) ≠ (𝑅𝐺)) → (𝐺) = (𝐺))
231, 2, 8, 21, 22syl121anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐺) = (𝐺))
2423coeq1d 5725 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐺) ∘ 𝐹) = ((𝐺) ∘ 𝐹))
2519, 24eqtr4d 2856 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐺) = ((𝐺) ∘ 𝐹))
26 coass 6111 . . . 4 ((𝐹) ∘ 𝐺) = ( ∘ (𝐹𝐺))
27 coass 6111 . . . 4 ((𝐺) ∘ 𝐹) = ( ∘ (𝐺𝐹))
2825, 26, 273eqtr3g 2876 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐺)) = ( ∘ (𝐺𝐹)))
2928coeq2d 5726 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐹𝐺))) = ( ∘ ( ∘ (𝐺𝐹))))
30 coass 6111 . . . 4 (() ∘ (𝐹𝐺)) = ( ∘ ( ∘ (𝐹𝐺)))
3110, 4, 5ltrn1o 37140 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇) → :𝐵1-1-onto𝐵)
321, 2, 31syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → :𝐵1-1-onto𝐵)
33 f1ococnv1 6636 . . . . . 6 (:𝐵1-1-onto𝐵 → () = ( I ↾ 𝐵))
3432, 33syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → () = ( I ↾ 𝐵))
3534coeq1d 5725 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (() ∘ (𝐹𝐺)) = (( I ↾ 𝐵) ∘ (𝐹𝐺)))
3630, 35syl5eqr 2867 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐹𝐺))) = (( I ↾ 𝐵) ∘ (𝐹𝐺)))
374, 5ltrnco 37735 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
381, 3, 8, 37syl3anc 1363 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) ∈ 𝑇)
3910, 4, 5ltrn1o 37140 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝐹𝐺):𝐵1-1-onto𝐵)
401, 38, 39syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺):𝐵1-1-onto𝐵)
41 f1of 6608 . . . 4 ((𝐹𝐺):𝐵1-1-onto𝐵 → (𝐹𝐺):𝐵𝐵)
42 fcoi2 6546 . . . 4 ((𝐹𝐺):𝐵𝐵 → (( I ↾ 𝐵) ∘ (𝐹𝐺)) = (𝐹𝐺))
4340, 41, 423syl 18 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (( I ↾ 𝐵) ∘ (𝐹𝐺)) = (𝐹𝐺))
4436, 43eqtrd 2853 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐹𝐺))) = (𝐹𝐺))
45 coass 6111 . . . 4 (() ∘ (𝐺𝐹)) = ( ∘ ( ∘ (𝐺𝐹)))
4634coeq1d 5725 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (() ∘ (𝐺𝐹)) = (( I ↾ 𝐵) ∘ (𝐺𝐹)))
4745, 46syl5eqr 2867 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐺𝐹))) = (( I ↾ 𝐵) ∘ (𝐺𝐹)))
484, 5ltrnco 37735 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
491, 8, 3, 48syl3anc 1363 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐺𝐹) ∈ 𝑇)
5010, 4, 5ltrn1o 37140 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝐺𝐹):𝐵1-1-onto𝐵)
511, 49, 50syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐺𝐹):𝐵1-1-onto𝐵)
52 f1of 6608 . . . 4 ((𝐺𝐹):𝐵1-1-onto𝐵 → (𝐺𝐹):𝐵𝐵)
53 fcoi2 6546 . . . 4 ((𝐺𝐹):𝐵𝐵 → (( I ↾ 𝐵) ∘ (𝐺𝐹)) = (𝐺𝐹))
5451, 52, 533syl 18 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (( I ↾ 𝐵) ∘ (𝐺𝐹)) = (𝐺𝐹))
5547, 54eqtrd 2853 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐺𝐹))) = (𝐺𝐹))
5629, 44, 553eqtr3d 2861 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013   I cid 5452  ccnv 5547  cres 5550  ccom 5552  wf 6344  1-1-ontowf1o 6347  cfv 6348  Basecbs 16471  HLchlt 36366  LHypclh 37000  LTrncltrn 37117  trLctrl 37174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-riotaBAD 35969
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-undef 7928  df-map 8397  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-p1 17638  df-lat 17644  df-clat 17706  df-oposet 36192  df-ol 36194  df-oml 36195  df-covers 36282  df-ats 36283  df-atl 36314  df-cvlat 36338  df-hlat 36367  df-llines 36514  df-lplanes 36515  df-lvols 36516  df-lines 36517  df-psubsp 36519  df-pmap 36520  df-padd 36812  df-lhyp 37004  df-laut 37005  df-ldil 37120  df-ltrn 37121  df-trl 37175
This theorem is referenced by:  cdlemg48  37753
  Copyright terms: Public domain W3C validator