Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg6c Structured version   Visualization version   GIF version

Theorem cdlemg6c 36410
 Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg6c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉)) → (𝐹‘(𝐺𝑄)) = 𝑄))
Distinct variable groups:   𝐴,𝑟   𝐹,𝑟   𝐺,𝑟   𝐻,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑇,𝑟   𝑉,𝑟   𝑊,𝑟
Allowed substitution hint:   𝑅(𝑟)

Proof of Theorem cdlemg6c
StepHypRef Expression
1 simpl1 1228 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simprl 811 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
3 simpl22 1323 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simpl23 1325 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝐹𝑇)
5 simpl31 1327 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝐺𝑇)
6 simprr 813 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ¬ 𝑟 (𝑃 𝑉))
7 simpl1l 1279 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝐾 ∈ HL)
8 simp22l 1377 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑄𝐴)
98adantr 472 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑄𝐴)
10 simprll 821 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑟𝐴)
11 cdlemg4b.v . . . . . . 7 𝑉 = (𝑅𝐺)
12 eqid 2760 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
13 cdlemg4.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
14 cdlemg4.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemg4.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
1612, 13, 14, 15trlcl 35954 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
171, 5, 16syl2anc 696 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑅𝐺) ∈ (Base‘𝐾))
1811, 17syl5eqel 2843 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑉 ∈ (Base‘𝐾))
19 simp22r 1378 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑄 𝑊)
2019adantr 472 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ¬ 𝑄 𝑊)
21 cdlemg4.l . . . . . . . . . . 11 = (le‘𝐾)
2221, 13, 14, 15trlle 35974 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
231, 5, 22syl2anc 696 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑅𝐺) 𝑊)
2411, 23syl5eqbr 4839 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑉 𝑊)
25 simp1l 1240 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ HL)
26 hllat 35153 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2725, 26syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ Lat)
2827adantr 472 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝐾 ∈ Lat)
29 cdlemg4.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
3012, 29atbase 35079 . . . . . . . . . . 11 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
318, 30syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑄 ∈ (Base‘𝐾))
3231adantr 472 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑄 ∈ (Base‘𝐾))
33 simp1r 1241 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑊𝐻)
3412, 13lhpbase 35787 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3533, 34syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑊 ∈ (Base‘𝐾))
3635adantr 472 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑊 ∈ (Base‘𝐾))
3712, 21lattr 17257 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 𝑉𝑉 𝑊) → 𝑄 𝑊))
3828, 32, 18, 36, 37syl13anc 1479 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ((𝑄 𝑉𝑉 𝑊) → 𝑄 𝑊))
3924, 38mpan2d 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 𝑉𝑄 𝑊))
4020, 39mtod 189 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ¬ 𝑄 𝑉)
41 cdlemg4.j . . . . . . 7 = (join‘𝐾)
4212, 21, 41, 29hlexch2 35172 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑟𝐴𝑉 ∈ (Base‘𝐾)) ∧ ¬ 𝑄 𝑉) → (𝑄 (𝑟 𝑉) → 𝑟 (𝑄 𝑉)))
437, 9, 10, 18, 40, 42syl131anc 1490 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 (𝑟 𝑉) → 𝑟 (𝑄 𝑉)))
44 simpl32 1329 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑄 (𝑃 𝑉))
45 simp21l 1375 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑃𝐴)
4645adantr 472 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑃𝐴)
4712, 29atbase 35079 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4846, 47syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑃 ∈ (Base‘𝐾))
4912, 21, 41latlej2 17262 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → 𝑉 (𝑃 𝑉))
5028, 48, 18, 49syl3anc 1477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑉 (𝑃 𝑉))
5112, 41latjcl 17252 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑃 𝑉) ∈ (Base‘𝐾))
5228, 48, 18, 51syl3anc 1477 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑃 𝑉) ∈ (Base‘𝐾))
5312, 21, 41latjle12 17263 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ (𝑄 𝑉) (𝑃 𝑉)))
5428, 32, 18, 52, 53syl13anc 1479 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ((𝑄 (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ (𝑄 𝑉) (𝑃 𝑉)))
5544, 50, 54mpbi2and 994 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 𝑉) (𝑃 𝑉))
5612, 29atbase 35079 . . . . . . . 8 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
5710, 56syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑟 ∈ (Base‘𝐾))
5812, 41latjcl 17252 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑄 𝑉) ∈ (Base‘𝐾))
5928, 32, 18, 58syl3anc 1477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 𝑉) ∈ (Base‘𝐾))
6012, 21lattr 17257 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑟 ∈ (Base‘𝐾) ∧ (𝑄 𝑉) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑟 (𝑄 𝑉) ∧ (𝑄 𝑉) (𝑃 𝑉)) → 𝑟 (𝑃 𝑉)))
6128, 57, 59, 52, 60syl13anc 1479 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ((𝑟 (𝑄 𝑉) ∧ (𝑄 𝑉) (𝑃 𝑉)) → 𝑟 (𝑃 𝑉)))
6255, 61mpan2d 712 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑟 (𝑄 𝑉) → 𝑟 (𝑃 𝑉)))
6343, 62syld 47 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 (𝑟 𝑉) → 𝑟 (𝑃 𝑉)))
646, 63mtod 189 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ¬ 𝑄 (𝑟 𝑉))
65 simpl21 1321 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
66 simpl33 1331 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝐹‘(𝐺𝑃)) = 𝑃)
6721, 29, 13, 14, 15, 41, 11cdlemg6a 36408 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑟 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑟)) = 𝑟)
681, 65, 2, 4, 5, 6, 66, 67syl133anc 1500 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝐹‘(𝐺𝑟)) = 𝑟)
6921, 29, 13, 14, 15, 41, 11cdlemg6b 36409 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑟 𝑉) ∧ (𝐹‘(𝐺𝑟)) = 𝑟)) → (𝐹‘(𝐺𝑄)) = 𝑄)
701, 2, 3, 4, 5, 64, 68, 69syl133anc 1500 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝐹‘(𝐺𝑄)) = 𝑄)
7170ex 449 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉)) → (𝐹‘(𝐺𝑄)) = 𝑄))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  Basecbs 16059  lecple 16150  joincjn 17145  Latclat 17246  Atomscatm 35053  HLchlt 35140  LHypclh 35773  LTrncltrn 35890  trLctrl 35948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-riotaBAD 34742 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-undef 7568  df-map 8025  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894  df-trl 35949 This theorem is referenced by:  cdlemg6d  36411
 Copyright terms: Public domain W3C validator