Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi Structured version   Visualization version   GIF version

Theorem cdlemi 36610
Description: Lemma I of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b 𝐵 = (Base‘𝐾)
cdlemi.l = (le‘𝐾)
cdlemi.j = (join‘𝐾)
cdlemi.m = (meet‘𝐾)
cdlemi.a 𝐴 = (Atoms‘𝐾)
cdlemi.h 𝐻 = (LHyp‘𝐾)
cdlemi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemi.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemi.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemi.s 𝑆 = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
Assertion
Ref Expression
cdlemi ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = 𝑆)

Proof of Theorem cdlemi
StepHypRef Expression
1 simp11l 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2 simp11r 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐻)
3 simp2l 1242 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑈𝐸)
4 simp13 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
5 simp2r 1243 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 cdlemi.b . . . . . 6 𝐵 = (Base‘𝐾)
7 cdlemi.l . . . . . 6 = (le‘𝐾)
8 cdlemi.j . . . . . 6 = (join‘𝐾)
9 cdlemi.m . . . . . 6 = (meet‘𝐾)
10 cdlemi.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 cdlemi.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 cdlemi.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemi.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdlemi.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
156, 7, 8, 9, 10, 11, 12, 13, 14cdlemi1 36608 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
161, 2, 3, 4, 5, 15syl221anc 1488 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
17 simp12 1247 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
186, 7, 8, 9, 10, 11, 12, 13, 14cdlemi2 36609 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
191, 2, 3, 17, 4, 5, 18syl231anc 1497 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
20 hllat 35153 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
211, 20syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ Lat)
22 simp11 1246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2311, 12, 14tendocl 36557 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
2422, 3, 4, 23syl3anc 1477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑈𝐺) ∈ 𝑇)
25 simp2rl 1309 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
266, 10atbase 35079 . . . . . . 7 (𝑃𝐴𝑃𝐵)
2725, 26syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐵)
286, 11, 12ltrncl 35914 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐵) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
2922, 24, 27, 28syl3anc 1477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
306, 11, 12, 13trlcl 35954 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
3122, 4, 30syl2anc 696 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐵)
326, 8latjcl 17252 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
3321, 27, 31, 32syl3anc 1477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
3411, 12, 14tendocl 36557 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
3522, 3, 17, 34syl3anc 1477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑈𝐹) ∈ 𝑇)
366, 11, 12ltrncl 35914 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇𝑃𝐵) → ((𝑈𝐹)‘𝑃) ∈ 𝐵)
3722, 35, 27, 36syl3anc 1477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐹)‘𝑃) ∈ 𝐵)
3811, 12ltrncnv 35935 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
3922, 17, 38syl2anc 696 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
4011, 12ltrnco 36509 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
4122, 4, 39, 40syl3anc 1477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝐹) ∈ 𝑇)
426, 11, 12, 13trlcl 35954 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
4322, 41, 42syl2anc 696 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
446, 8latjcl 17252 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑈𝐹)‘𝑃) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
4521, 37, 43, 44syl3anc 1477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
466, 7, 9latlem12 17279 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑈𝐺)‘𝑃) ∈ 𝐵 ∧ (𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)) → ((((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)) ∧ ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
4721, 29, 33, 45, 46syl13anc 1479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)) ∧ ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
4816, 19, 47mpbi2and 994 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))))
49 hlatl 35150 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
501, 49syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ AtLat)
517, 10, 11, 12ltrnat 35929 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐴) → ((𝑈𝐺)‘𝑃) ∈ 𝐴)
5222, 24, 25, 51syl3anc 1477 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) ∈ 𝐴)
537, 10, 11, 12ltrnel 35928 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊))
5422, 35, 5, 53syl3anc 1477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊))
556, 7, 8, 9, 10, 11, 12, 13, 14cdlemi1 36608 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹)))
561, 2, 3, 17, 5, 55syl221anc 1488 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹)))
575, 54, 563jca 1123 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊) ∧ ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹))))
58 eqid 2760 . . . . . . 7 ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
596, 7, 8, 9, 10, 11, 12, 13, 58cdlemh 36607 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊) ∧ ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) 𝑊))
6059simpld 477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊) ∧ ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴)
6157, 60syld3an2 1519 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴)
627, 10atcmp 35101 . . . 4 ((𝐾 ∈ AtLat ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐴 ∧ ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴) → (((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
6350, 52, 61, 62syl3anc 1477 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
6448, 63mpbid 222 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))))
65 cdlemi.s . 2 𝑆 = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
6664, 65syl6eqr 2812 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804   I cid 5173  ccnv 5265  cres 5268  ccom 5270  cfv 6049  (class class class)co 6813  Basecbs 16059  lecple 16150  joincjn 17145  meetcmee 17146  Latclat 17246  Atomscatm 35053  AtLatcal 35054  HLchlt 35140  LHypclh 35773  LTrncltrn 35890  trLctrl 35948  TEndoctendo 36542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-riotaBAD 34742
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-undef 7568  df-map 8025  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894  df-trl 35949  df-tendo 36545
This theorem is referenced by:  cdlemj1  36611
  Copyright terms: Public domain W3C validator