Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk19ylem Structured version   Visualization version   GIF version

Theorem cdlemk19ylem 36605
Description: Lemma for cdlemk19y 36607. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5c.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk5a.u2 𝐶 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝑒𝑏))))))
Assertion
Ref Expression
cdlemk19ylem ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝐹 / 𝑔𝑌 = (𝑁𝑃))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝑒,𝑓,𝑖,𝑗   ,𝑒   𝑓,𝑖,𝑗,   ,𝑖,𝑗   ,𝑒,𝑓,𝑖,𝑗   𝐴,𝑖,𝑗   𝑓,𝐹,𝑖,𝑗   𝑖,𝐻,𝑗   𝑖,𝐾,𝑗   𝑓,𝑁,𝑖,𝑗   𝑃,𝑒,𝑓,𝑖,𝑗   𝑅,𝑒,𝑓,𝑖,𝑗   𝑒,𝑏,𝑗,𝑆   𝑇,𝑒,𝑓,𝑖,𝑗   𝑒,𝑊,𝑓,𝑖,𝑗   𝑓,𝑏,𝑖   𝑒,𝐹,𝑔
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑔,𝑏)   𝐵(𝑒,𝑓,𝑖,𝑗,𝑏)   𝐶(𝑒,𝑓,𝑔,𝑖,𝑗,𝑏)   𝑃(𝑏)   𝑅(𝑏)   𝑆(𝑓,𝑔,𝑖)   𝑇(𝑏)   𝐹(𝑏)   𝐻(𝑒,𝑓,𝑔,𝑏)   (𝑏)   𝐾(𝑒,𝑓,𝑔,𝑏)   (𝑒,𝑓,𝑔,𝑏)   (𝑏)   𝑁(𝑒,𝑔,𝑏)   𝑊(𝑔,𝑏)   𝑌(𝑒,𝑓,𝑔,𝑖,𝑗,𝑏)   𝑍(𝑒,𝑓,𝑖,𝑗,𝑏)

Proof of Theorem cdlemk19ylem
StepHypRef Expression
1 simp1l 1158 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp1r 1159 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
3 simp2 1129 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
4 simp3l 1162 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝑏𝑇)
5 simp3rl 1207 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝑏 ≠ ( I ↾ 𝐵))
6 simp3rr 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝑅𝑏) ≠ (𝑅𝐹))
75, 6, 63jca 1315 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))
8 cdlemk5.b . . . 4 𝐵 = (Base‘𝐾)
9 cdlemk5.l . . . 4 = (le‘𝐾)
10 cdlemk5.j . . . 4 = (join‘𝐾)
11 cdlemk5.m . . . 4 = (meet‘𝐾)
12 cdlemk5.a . . . 4 𝐴 = (Atoms‘𝐾)
13 cdlemk5.h . . . 4 𝐻 = (LHyp‘𝐾)
14 cdlemk5.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemk5.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
16 cdlemk5.z . . . 4 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
17 cdlemk5.y . . . 4 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
18 cdlemk5c.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
19 cdlemk5a.u2 . . . 4 𝐶 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝑒𝑏))))))
208, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemkyuu 36603 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝐹 / 𝑔𝑌 = ((𝐶𝐹)‘𝑃))
211, 2, 2, 3, 4, 7, 20syl312anc 1428 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝐹 / 𝑔𝑌 = ((𝐶𝐹)‘𝑃))
22 simp1rl 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝐹𝑇)
23 simp1rr 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝐹 ≠ ( I ↾ 𝐵))
24 eqid 2692 . . . . 5 (𝑆𝑏) = (𝑆𝑏)
258, 9, 10, 11, 12, 13, 14, 15, 18, 24, 19cdlemk19 36544 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑏𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹))) → (𝐶𝐹) = 𝑁)
261, 22, 4, 3, 23, 5, 6, 25syl313anc 1431 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐶𝐹) = 𝑁)
2726fveq1d 6274 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → ((𝐶𝐹)‘𝑃) = (𝑁𝑃))
2821, 27eqtrd 2726 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝐹 / 𝑔𝑌 = (𝑁𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1564  wcel 2071  wne 2864  csb 3607   class class class wbr 4728  cmpt 4805   I cid 5095  ccnv 5185  cres 5188  ccom 5190  cfv 5969  crio 6693  (class class class)co 6733  Basecbs 15948  lecple 16039  joincjn 17034  meetcmee 17035  Atomscatm 34938  HLchlt 35025  LHypclh 35658  LTrncltrn 35775  trLctrl 35833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-riotaBAD 34627
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-op 4260  df-uni 4513  df-iun 4598  df-iin 4599  df-br 4729  df-opab 4789  df-mpt 4806  df-id 5096  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-1st 7253  df-2nd 7254  df-undef 7487  df-map 7944  df-preset 17018  df-poset 17036  df-plt 17048  df-lub 17064  df-glb 17065  df-join 17066  df-meet 17067  df-p0 17129  df-p1 17130  df-lat 17136  df-clat 17198  df-oposet 34851  df-ol 34853  df-oml 34854  df-covers 34941  df-ats 34942  df-atl 34973  df-cvlat 34997  df-hlat 35026  df-llines 35172  df-lplanes 35173  df-lvols 35174  df-lines 35175  df-psubsp 35177  df-pmap 35178  df-padd 35470  df-lhyp 35662  df-laut 35663  df-ldil 35778  df-ltrn 35779  df-trl 35834
This theorem is referenced by:  cdlemk19y  36607
  Copyright terms: Public domain W3C validator