Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk20 Structured version   Visualization version   GIF version

Theorem cdlemk20 36479
 Description: Part of proof of Lemma K of [Crawley] p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be fi. Our 𝐷, 𝐶, 𝑂, 𝑄, 𝑈, 𝑉 represent their f1, f2, k1, k2, sigma1, sigma2. (Contributed by NM, 5-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b 𝐵 = (Base‘𝐾)
cdlemk1.l = (le‘𝐾)
cdlemk1.j = (join‘𝐾)
cdlemk1.m = (meet‘𝐾)
cdlemk1.a 𝐴 = (Atoms‘𝐾)
cdlemk1.h 𝐻 = (LHyp‘𝐾)
cdlemk1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk1.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk1.o 𝑂 = (𝑆𝐷)
cdlemk1.u 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
cdlemk2a.q 𝑄 = (𝑆𝐶)
Assertion
Ref Expression
cdlemk20 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑈𝐶)‘𝑃) = (𝑄𝑃))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐷,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑒   ,𝑒   𝐷,𝑒,𝑗   𝑒,𝑂   𝑃,𝑒   𝑅,𝑒   𝑇,𝑒   𝑒,𝑊   ,𝑗   ,𝑗   ,𝑗   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑗,𝑂   𝑃,𝑗   𝑅,𝑗   𝑇,𝑗   𝑗,𝑊   𝑒,𝐹,𝑓,𝑖   𝐶,𝑒   𝑓,𝑗,𝐶,𝑖
Allowed substitution hints:   𝐴(𝑒,𝑓)   𝐵(𝑒,𝑓,𝑖,𝑗)   𝑄(𝑒,𝑓,𝑖,𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗)   𝑈(𝑒,𝑓,𝑖,𝑗)   𝐻(𝑒,𝑓)   𝐾(𝑒,𝑓)   (𝑒,𝑓)   𝑁(𝑒)   𝑂(𝑓,𝑖)

Proof of Theorem cdlemk20
StepHypRef Expression
1 simp11 1111 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp23 1116 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑅𝐹) = (𝑅𝑁))
3 simp21r 1199 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → 𝐶𝑇)
4 simp12 1112 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → 𝐹𝑇)
5 simp13 1113 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → 𝐷𝑇)
6 simp21l 1198 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → 𝑁𝑇)
7 simp3r1 1189 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑅𝐷) ≠ (𝑅𝐹))
8 simp3r3 1191 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑅𝐶) ≠ (𝑅𝐷))
98necomd 2878 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑅𝐷) ≠ (𝑅𝐶))
107, 9jca 553 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)))
11 simp3l1 1186 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → 𝐹 ≠ ( I ↾ 𝐵))
12 simp3l3 1188 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → 𝐶 ≠ ( I ↾ 𝐵))
13 simp3l2 1187 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → 𝐷 ≠ ( I ↾ 𝐵))
1411, 12, 133jca 1261 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)))
15 simp22 1115 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
16 cdlemk1.b . . . 4 𝐵 = (Base‘𝐾)
17 cdlemk1.l . . . 4 = (le‘𝐾)
18 cdlemk1.j . . . 4 = (join‘𝐾)
19 cdlemk1.m . . . 4 = (meet‘𝐾)
20 cdlemk1.a . . . 4 𝐴 = (Atoms‘𝐾)
21 cdlemk1.h . . . 4 𝐻 = (LHyp‘𝐾)
22 cdlemk1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
23 cdlemk1.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
24 cdlemk1.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
25 cdlemk1.o . . . 4 𝑂 = (𝑆𝐷)
26 cdlemk1.u . . . 4 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
2716, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26cdlemkuv2 36472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐶𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑈𝐶)‘𝑃) = ((𝑃 (𝑅𝐶)) ((𝑂𝑃) (𝑅‘(𝐶𝐷)))))
281, 2, 3, 4, 5, 6, 10, 14, 15, 27syl333anc 1398 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑈𝐶)‘𝑃) = ((𝑃 (𝑅𝐶)) ((𝑂𝑃) (𝑅‘(𝐶𝐷)))))
2917, 18, 20, 21, 22, 23trljat1 35771 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐶𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐶)) = (𝑃 (𝐶𝑃)))
301, 3, 15, 29syl3anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑃 (𝑅𝐶)) = (𝑃 (𝐶𝑃)))
3125fveq1i 6230 . . . . 5 (𝑂𝑃) = ((𝑆𝐷)‘𝑃)
3231a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑂𝑃) = ((𝑆𝐷)‘𝑃))
3321, 22, 23trlcocnv 36325 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐶𝑇𝐷𝑇) → (𝑅‘(𝐶𝐷)) = (𝑅‘(𝐷𝐶)))
341, 3, 5, 33syl3anc 1366 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑅‘(𝐶𝐷)) = (𝑅‘(𝐷𝐶)))
3532, 34oveq12d 6708 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑂𝑃) (𝑅‘(𝐶𝐷))) = (((𝑆𝐷)‘𝑃) (𝑅‘(𝐷𝐶))))
3630, 35oveq12d 6708 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑃 (𝑅𝐶)) ((𝑂𝑃) (𝑅‘(𝐶𝐷)))) = ((𝑃 (𝐶𝑃)) (((𝑆𝐷)‘𝑃) (𝑅‘(𝐷𝐶)))))
37 cdlemk2a.q . . . 4 𝑄 = (𝑆𝐶)
3837fveq1i 6230 . . 3 (𝑄𝑃) = ((𝑆𝐶)‘𝑃)
396, 5jca 553 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑁𝑇𝐷𝑇))
40 simp3r2 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → (𝑅𝐶) ≠ (𝑅𝐹))
4140, 7jca 553 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)))
4216, 17, 18, 20, 21, 22, 23, 19, 24cdlemk12 36455 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐶𝑇) ∧ ((𝑁𝑇𝐷𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐶) ≠ (𝑅𝐷))) → ((𝑆𝐶)‘𝑃) = ((𝑃 (𝐶𝑃)) (((𝑆𝐷)‘𝑃) (𝑅‘(𝐷𝐶)))))
431, 4, 3, 39, 15, 2, 14, 41, 8, 42syl333anc 1398 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑆𝐶)‘𝑃) = ((𝑃 (𝐶𝑃)) (((𝑆𝐷)‘𝑃) (𝑅‘(𝐷𝐶)))))
4438, 43syl5req 2698 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑃 (𝐶𝑃)) (((𝑆𝐷)‘𝑃) (𝑅‘(𝐷𝐶)))) = (𝑄𝑃))
4528, 36, 443eqtrd 2689 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑈𝐶)‘𝑃) = (𝑄𝑃))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   class class class wbr 4685   ↦ cmpt 4762   I cid 5052  ◡ccnv 5142   ↾ cres 5145   ∘ ccom 5147  ‘cfv 5926  ℩crio 6650  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  Atomscatm 34868  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  trLctrl 35763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-riotaBAD 34557 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-undef 7444  df-map 7901  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764 This theorem is referenced by:  cdlemk20-2N  36497  cdlemk22  36498
 Copyright terms: Public domain W3C validator