Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk25-3 Structured version   Visualization version   GIF version

Theorem cdlemk25-3 36011
Description: Part of proof of Lemma K of [Crawley] p. 118. Eliminate the (𝑅𝐶) = (𝑅𝐷) requirement from cdlemk24-3 36010. (Contributed by NM, 7-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b 𝐵 = (Base‘𝐾)
cdlemk3.l = (le‘𝐾)
cdlemk3.j = (join‘𝐾)
cdlemk3.m = (meet‘𝐾)
cdlemk3.a 𝐴 = (Atoms‘𝐾)
cdlemk3.h 𝐻 = (LHyp‘𝐾)
cdlemk3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk3.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk3.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk3.u1 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
Assertion
Ref Expression
cdlemk25-3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))
Distinct variable groups:   𝑒,𝑑,𝑓,𝑖,   ,𝑖   ,𝑑,𝑒,𝑓,𝑖   𝐴,𝑖   𝑗,𝑑,𝐷,𝑒,𝑓,𝑖   𝑓,𝐹,𝑖   𝐺,𝑑,𝑒,𝑗   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑅,𝑑,𝑒,𝑓,𝑖   𝑇,𝑑,𝑒,𝑓,𝑖   𝑊,𝑑,𝑒,𝑓,𝑖   ,𝑗   ,𝑗   ,𝑗   𝐴,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑆,𝑑,𝑒,𝑗   𝑇,𝑗   𝑗,𝑊   𝐹,𝑑,𝑒   ,𝑒   𝐶,𝑑,𝑒,𝑓,𝑖,𝑗   𝑓,𝐺,𝑖   𝑥,𝑑,𝑒,𝑓,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑒,𝑓,𝑑)   𝐵(𝑥,𝑒,𝑓,𝑖,𝑗,𝑑)   𝐶(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑓,𝑖)   𝑇(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥,𝑒,𝑓,𝑑)   (𝑥)   𝐾(𝑥,𝑒,𝑓,𝑑)   (𝑥,𝑓,𝑑)   (𝑥)   𝑁(𝑥,𝑒,𝑑)   𝑊(𝑥)   𝑌(𝑥,𝑒,𝑓,𝑖,𝑗,𝑑)

Proof of Theorem cdlemk25-3
StepHypRef Expression
1 simpl1 1062 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) = (𝑅𝐷)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)))
2 simpl2 1063 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) = (𝑅𝐷)) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))))
3 simpl31 1140 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) = (𝑅𝐷)) → ((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)))
4 simpl32 1141 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) = (𝑅𝐷)) → (𝑅𝐺) ≠ (𝑅𝐷))
5 simpr 477 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) = (𝑅𝐷)) → (𝑅𝐶) = (𝑅𝐷))
64, 5jca 554 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) = (𝑅𝐷)) → ((𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐶) = (𝑅𝐷)))
7 simpl33 1142 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) = (𝑅𝐷)) → ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))
8 cdlemk3.b . . . 4 𝐵 = (Base‘𝐾)
9 cdlemk3.l . . . 4 = (le‘𝐾)
10 cdlemk3.j . . . 4 = (join‘𝐾)
11 cdlemk3.m . . . 4 = (meet‘𝐾)
12 cdlemk3.a . . . 4 𝐴 = (Atoms‘𝐾)
13 cdlemk3.h . . . 4 𝐻 = (LHyp‘𝐾)
14 cdlemk3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemk3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
16 cdlemk3.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
17 cdlemk3.u1 . . . 4 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
188, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk24-3 36010 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ ((𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐶) = (𝑅𝐷)) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))
191, 2, 3, 6, 7, 18syl113anc 1336 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) = (𝑅𝐷)) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))
20 simp11 1089 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simp121 1191 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → 𝐹𝑇)
22 simp122 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → 𝐷𝑇)
2320, 21, 223jca 1240 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇))
2423adantr 481 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) ≠ (𝑅𝐷)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇))
25 simp123 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → 𝑁𝑇)
26 simp131 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → 𝐺𝑇)
27 simp132 1195 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → 𝐶𝑇)
2825, 26, 273jca 1240 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → (𝑁𝑇𝐺𝑇𝐶𝑇))
29 simp21 1092 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
30 simp221 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → (𝑅𝐹) = (𝑅𝑁))
3128, 29, 303jca 1240 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → ((𝑁𝑇𝐺𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
3231adantr 481 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) ≠ (𝑅𝐷)) → ((𝑁𝑇𝐺𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
33 simp222 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → 𝐹 ≠ ( I ↾ 𝐵))
34 simp223 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → 𝐷 ≠ ( I ↾ 𝐵))
35 simp231 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → 𝐺 ≠ ( I ↾ 𝐵))
3633, 34, 353jca 1240 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)))
3736adantr 481 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) ≠ (𝑅𝐷)) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)))
38 simp232 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → 𝐶 ≠ ( I ↾ 𝐵))
39 simp311 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → (𝑅𝐺) ≠ (𝑅𝐶))
40 simp312 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → (𝑅𝐶) ≠ (𝑅𝐹))
4138, 39, 403jca 1240 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → (𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹)))
4241adantr 481 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) ≠ (𝑅𝐷)) → (𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹)))
43 simp313 1208 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → (𝑅𝐷) ≠ (𝑅𝐹))
4443adantr 481 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) ≠ (𝑅𝐷)) → (𝑅𝐷) ≠ (𝑅𝐹))
45 simpl32 1141 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) ≠ (𝑅𝐷)) → (𝑅𝐺) ≠ (𝑅𝐷))
46 simpr 477 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) ≠ (𝑅𝐷)) → (𝑅𝐶) ≠ (𝑅𝐷))
4744, 45, 463jca 1240 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) ≠ (𝑅𝐷)) → ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))
488, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk22-3 36008 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))
4924, 32, 37, 42, 47, 48syl113anc 1336 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) ∧ (𝑅𝐶) ≠ (𝑅𝐷)) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))
5019, 49pm2.61dane 2878 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791   class class class wbr 4644  cmpt 4720   I cid 5013  ccnv 5103  cres 5106  ccom 5108  cfv 5876  crio 6595  (class class class)co 6635  cmpt2 6637  Basecbs 15838  lecple 15929  joincjn 16925  meetcmee 16926  Atomscatm 34369  HLchlt 34456  LHypclh 35089  LTrncltrn 35206  trLctrl 35264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-riotaBAD 34058
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-undef 7384  df-map 7844  df-preset 16909  df-poset 16927  df-plt 16939  df-lub 16955  df-glb 16956  df-join 16957  df-meet 16958  df-p0 17020  df-p1 17021  df-lat 17027  df-clat 17089  df-oposet 34282  df-ol 34284  df-oml 34285  df-covers 34372  df-ats 34373  df-atl 34404  df-cvlat 34428  df-hlat 34457  df-llines 34603  df-lplanes 34604  df-lvols 34605  df-lines 34606  df-psubsp 34608  df-pmap 34609  df-padd 34901  df-lhyp 35093  df-laut 35094  df-ldil 35209  df-ltrn 35210  df-trl 35265
This theorem is referenced by:  cdlemk26-3  36013
  Copyright terms: Public domain W3C validator