Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk39s-id Structured version   Visualization version   GIF version

Theorem cdlemk39s-id 38078
Description: Substitution version of cdlemk39 38054 with non-identity requirement on 𝐺 removed. TODO: Can any commonality with cdlemk35s 38075 be exploited? (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk39s-id (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk39s-id
StepHypRef Expression
1 simpl1 1187 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21l 1286 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐹𝑇)
3 simp23 1204 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑁𝑇)
4 simp3r 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐹) = (𝑅𝑁))
52, 3, 43jca 1124 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)))
65adantr 483 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)))
7 simpl3l 1224 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simpr 487 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐺 = ( I ↾ 𝐵))
9 cdlemk5.b . . . . . . 7 𝐵 = (Base‘𝐾)
10 cdlemk5.l . . . . . . 7 = (le‘𝐾)
11 cdlemk5.j . . . . . . 7 = (join‘𝐾)
12 cdlemk5.m . . . . . . 7 = (meet‘𝐾)
13 cdlemk5.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
14 cdlemk5.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
15 cdlemk5.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 cdlemk5.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
17 cdlemk5.z . . . . . . 7 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
18 cdlemk5.y . . . . . . 7 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
19 cdlemk5.x . . . . . . 7 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
209, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemkid 38074 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋 = ( I ↾ 𝐵))
211, 6, 7, 8, 20syl112anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐺 / 𝑔𝑋 = ( I ↾ 𝐵))
2221fveq2d 6676 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅𝐺 / 𝑔𝑋) = (𝑅‘( I ↾ 𝐵)))
23 simpl1l 1220 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐾 ∈ HL)
24 simpl1r 1221 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝑊𝐻)
25 eqid 2823 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
269, 25, 14, 16trlid0 37314 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
2723, 24, 26syl2anc 586 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
2822, 27eqtrd 2858 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅𝐺 / 𝑔𝑋) = (0.‘𝐾))
29 hlop 36500 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
3023, 29syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐾 ∈ OP)
31 simpl22 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐺𝑇)
329, 14, 15, 16trlcl 37302 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
331, 31, 32syl2anc 586 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐵)
349, 10, 25op0le 36324 . . . 4 ((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ 𝐵) → (0.‘𝐾) (𝑅𝐺))
3530, 33, 34syl2anc 586 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (0.‘𝐾) (𝑅𝐺))
3628, 35eqbrtrd 5090 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
37 simpl1 1187 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
38 simpl21 1247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
39 simpl22 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
40 simpr 487 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → 𝐺 ≠ ( I ↾ 𝐵))
4139, 40jca 514 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)))
42 simpl23 1249 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → 𝑁𝑇)
43 simpl3 1189 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
449, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk39s 38077 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
4537, 38, 41, 42, 43, 44syl131anc 1379 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
4636, 45pm2.61dane 3106 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  csb 3885   class class class wbr 5068   I cid 5461  ccnv 5556  cres 5559  ccom 5561  cfv 6357  crio 7115  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556  meetcmee 17557  0.cp0 17649  OPcops 36310  Atomscatm 36401  HLchlt 36488  LHypclh 37122  LTrncltrn 37239  trLctrl 37296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-undef 7941  df-map 8410  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297
This theorem is referenced by:  cdlemk39u1  38105
  Copyright terms: Public domain W3C validator