Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk39u Structured version   Visualization version   GIF version

Theorem cdlemk39u 35072
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. Trace-preserving property of the value of tau, represented by (𝑈𝐺). (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
cdlemk5.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk39u ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏
Allowed substitution hints:   𝑈(𝑧,𝑔,𝑏)   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk39u
StepHypRef Expression
1 simpr 475 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → 𝐹 = 𝑁)
2 simpl2r 1107 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → 𝐺𝑇)
3 cdlemk5.x . . . . . 6 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
4 cdlemk5.u . . . . . 6 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
53, 4cdlemk40t 35022 . . . . 5 ((𝐹 = 𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺)
61, 2, 5syl2anc 690 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑈𝐺) = 𝐺)
76fveq2d 6087 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑅‘(𝑈𝐺)) = (𝑅𝐺))
8 simp11l 1164 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
9 hllat 33466 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
108, 9syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
11 simp11 1083 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp2r 1080 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
13 cdlemk5.b . . . . . . 7 𝐵 = (Base‘𝐾)
14 cdlemk5.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
15 cdlemk5.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 cdlemk5.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
1713, 14, 15, 16trlcl 34267 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
1811, 12, 17syl2anc 690 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) ∈ 𝐵)
19 cdlemk5.l . . . . . 6 = (le‘𝐾)
2013, 19latref 16817 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐺) ∈ 𝐵) → (𝑅𝐺) (𝑅𝐺))
2110, 18, 20syl2anc 690 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) (𝑅𝐺))
2221adantr 479 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑅𝐺) (𝑅𝐺))
237, 22eqbrtrd 4594 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
24 simpl1 1056 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇))
25 simpl2l 1106 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → (𝑅𝐹) = (𝑅𝑁))
26 simpr 475 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → 𝐹𝑁)
27 simpl2r 1107 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → 𝐺𝑇)
28 simpl3 1058 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
29 cdlemk5.j . . . 4 = (join‘𝐾)
30 cdlemk5.m . . . 4 = (meet‘𝐾)
31 cdlemk5.a . . . 4 𝐴 = (Atoms‘𝐾)
32 cdlemk5.z . . . 4 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
33 cdlemk5.y . . . 4 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
3413, 19, 29, 30, 31, 14, 15, 16, 32, 33, 3, 4cdlemk39u1 35071 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
3524, 25, 26, 27, 28, 34syl131anc 1330 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
3623, 35pm2.61dane 2863 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2774  wral 2890  ifcif 4030   class class class wbr 4572  cmpt 4632   I cid 4933  ccnv 5022  cres 5025  ccom 5027  cfv 5785  crio 6483  (class class class)co 6522  Basecbs 15636  lecple 15716  joincjn 16708  meetcmee 16709  Latclat 16809  Atomscatm 33366  HLchlt 33453  LHypclh 34086  LTrncltrn 34203  trLctrl 34261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-riotaBAD 33055
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-1st 7031  df-2nd 7032  df-undef 7258  df-map 7718  df-preset 16692  df-poset 16710  df-plt 16722  df-lub 16738  df-glb 16739  df-join 16740  df-meet 16741  df-p0 16803  df-p1 16804  df-lat 16810  df-clat 16872  df-oposet 33279  df-ol 33281  df-oml 33282  df-covers 33369  df-ats 33370  df-atl 33401  df-cvlat 33425  df-hlat 33454  df-llines 33600  df-lplanes 33601  df-lvols 33602  df-lines 33603  df-psubsp 33605  df-pmap 33606  df-padd 33898  df-lhyp 34090  df-laut 34091  df-ldil 34206  df-ltrn 34207  df-trl 34262
This theorem is referenced by:  cdlemk56  35075
  Copyright terms: Public domain W3C validator