Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkoatnle-2N Structured version   Visualization version   GIF version

Theorem cdlemkoatnle-2N 36480
 Description: Utility lemma. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b 𝐵 = (Base‘𝐾)
cdlemk2.l = (le‘𝐾)
cdlemk2.j = (join‘𝐾)
cdlemk2.m = (meet‘𝐾)
cdlemk2.a 𝐴 = (Atoms‘𝐾)
cdlemk2.h 𝐻 = (LHyp‘𝐾)
cdlemk2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk2.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk2.q 𝑄 = (𝑆𝐶)
Assertion
Ref Expression
cdlemkoatnle-2N (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑄𝑃) ∈ 𝐴 ∧ ¬ (𝑄𝑃) 𝑊))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐶,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓,𝑖)   𝑄(𝑓,𝑖)   𝑆(𝑓,𝑖)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)

Proof of Theorem cdlemkoatnle-2N
StepHypRef Expression
1 simp11 1111 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐾 ∈ HL)
2 simp12 1112 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑊𝐻)
31, 2jca 553 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp21 1114 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
5 simp22 1115 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶𝑇)
6 simp23 1116 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑁𝑇)
7 simp33 1119 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp13 1113 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐹) = (𝑅𝑁))
9 simp32l 1206 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
10 simp32r 1207 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶 ≠ ( I ↾ 𝐵))
11 simp31 1117 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐶) ≠ (𝑅𝐹))
12 cdlemk2.b . . 3 𝐵 = (Base‘𝐾)
13 cdlemk2.l . . 3 = (le‘𝐾)
14 cdlemk2.j . . 3 = (join‘𝐾)
15 cdlemk2.m . . 3 = (meet‘𝐾)
16 cdlemk2.a . . 3 𝐴 = (Atoms‘𝐾)
17 cdlemk2.h . . 3 𝐻 = (LHyp‘𝐾)
18 cdlemk2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
19 cdlemk2.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
20 cdlemk2.s . . 3 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
21 cdlemk2.q . . 3 𝑄 = (𝑆𝐶)
2212, 13, 14, 15, 16, 17, 18, 19, 20, 21cdlemkoatnle 36456 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐶𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐶) ≠ (𝑅𝐹))) → ((𝑄𝑃) ∈ 𝐴 ∧ ¬ (𝑄𝑃) 𝑊))
233, 4, 5, 6, 7, 8, 9, 10, 11, 22syl333anc 1398 1 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑄𝑃) ∈ 𝐴 ∧ ¬ (𝑄𝑃) 𝑊))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   class class class wbr 4685   ↦ cmpt 4762   I cid 5052  ◡ccnv 5142   ↾ cres 5145   ∘ ccom 5147  ‘cfv 5926  ℩crio 6650  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  Atomscatm 34868  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  trLctrl 35763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-riotaBAD 34557 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-undef 7444  df-map 7901  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator