Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml3N Structured version   Visualization version   GIF version

Theorem cdleml3N 35732
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠,𝑓,𝑔   𝐵,𝑔,𝑠   𝑓,𝐸   𝑓,𝑔,𝐻,𝑠   𝑓,𝐾,𝑔   0 ,𝑓,𝑠   𝑇,𝑓,𝑔   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊,𝑔
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑓,𝑔)   𝑈(𝑔)   𝐸(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem cdleml3N
StepHypRef Expression
1 simp1 1059 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2 1060 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝑈𝐸𝑉𝐸𝑓𝑇))
3 simp31 1095 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑓 ≠ ( I ↾ 𝐵))
4 simp32 1096 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑈0 )
5 simp21 1092 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑈𝐸)
6 simp23 1094 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑓𝑇)
7 cdleml1.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 cdleml1.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
9 cdleml1.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdleml1.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
11 cdleml3.o . . . . . . 7 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
127, 8, 9, 10, 11tendoid0 35579 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝑓𝑇𝑓 ≠ ( I ↾ 𝐵))) → ((𝑈𝑓) = ( I ↾ 𝐵) ↔ 𝑈 = 0 ))
131, 5, 6, 3, 12syl112anc 1327 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑈𝑓) = ( I ↾ 𝐵) ↔ 𝑈 = 0 ))
1413necon3bid 2840 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑈𝑓) ≠ ( I ↾ 𝐵) ↔ 𝑈0 ))
154, 14mpbird 247 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝑈𝑓) ≠ ( I ↾ 𝐵))
16 simp33 1097 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑉0 )
17 simp22 1093 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑉𝐸)
187, 8, 9, 10, 11tendoid0 35579 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸 ∧ (𝑓𝑇𝑓 ≠ ( I ↾ 𝐵))) → ((𝑉𝑓) = ( I ↾ 𝐵) ↔ 𝑉 = 0 ))
191, 17, 6, 3, 18syl112anc 1327 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑉𝑓) = ( I ↾ 𝐵) ↔ 𝑉 = 0 ))
2019necon3bid 2840 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑉𝑓) ≠ ( I ↾ 𝐵) ↔ 𝑉0 ))
2116, 20mpbird 247 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝑉𝑓) ≠ ( I ↾ 𝐵))
22 cdleml1.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
237, 8, 9, 22, 10cdleml2N 35731 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))
241, 2, 3, 15, 21, 23syl113anc 1335 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))
25 simpl1 1062 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpr 477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → 𝑠𝐸)
27 simpl21 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → 𝑈𝐸)
28 simpl23 1139 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → 𝑓𝑇)
298, 9, 10tendocoval 35520 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑈𝐸) ∧ 𝑓𝑇) → ((𝑠𝑈)‘𝑓) = (𝑠‘(𝑈𝑓)))
3025, 26, 27, 28, 29syl121anc 1328 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → ((𝑠𝑈)‘𝑓) = (𝑠‘(𝑈𝑓)))
3130eqeq1d 2628 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → (((𝑠𝑈)‘𝑓) = (𝑉𝑓) ↔ (𝑠‘(𝑈𝑓)) = (𝑉𝑓)))
32 simp11 1089 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp2 1060 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑠𝐸)
34 simp121 1191 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑈𝐸)
358, 10tendococl 35526 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑈𝐸) → (𝑠𝑈) ∈ 𝐸)
3632, 33, 34, 35syl3anc 1323 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → (𝑠𝑈) ∈ 𝐸)
37 simp122 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑉𝐸)
38 simp3 1061 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → ((𝑠𝑈)‘𝑓) = (𝑉𝑓))
39 simp123 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑓𝑇)
40 simp131 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑓 ≠ ( I ↾ 𝐵))
417, 8, 9, 10tendocan 35578 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑈) ∈ 𝐸𝑉𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) ∧ (𝑓𝑇𝑓 ≠ ( I ↾ 𝐵))) → (𝑠𝑈) = 𝑉)
4232, 36, 37, 38, 39, 40, 41syl132anc 1341 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → (𝑠𝑈) = 𝑉)
43423expia 1264 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → (((𝑠𝑈)‘𝑓) = (𝑉𝑓) → (𝑠𝑈) = 𝑉))
4431, 43sylbird 250 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → ((𝑠‘(𝑈𝑓)) = (𝑉𝑓) → (𝑠𝑈) = 𝑉))
4544reximdva 3016 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉))
4624, 45mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wrex 2913  cmpt 4678   I cid 4989  cres 5081  ccom 5083  cfv 5850  Basecbs 15776  HLchlt 34103  LHypclh 34736  LTrncltrn 34853  trLctrl 34911  TEndoctendo 35506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-riotaBAD 33705
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-undef 7345  df-map 7805  df-preset 16844  df-poset 16862  df-plt 16874  df-lub 16890  df-glb 16891  df-join 16892  df-meet 16893  df-p0 16955  df-p1 16956  df-lat 16962  df-clat 17024  df-oposet 33929  df-ol 33931  df-oml 33932  df-covers 34019  df-ats 34020  df-atl 34051  df-cvlat 34075  df-hlat 34104  df-llines 34250  df-lplanes 34251  df-lvols 34252  df-lines 34253  df-psubsp 34255  df-pmap 34256  df-padd 34548  df-lhyp 34740  df-laut 34741  df-ldil 34856  df-ltrn 34857  df-trl 34912  df-tendo 35509
This theorem is referenced by:  cdleml4N  35733
  Copyright terms: Public domain W3C validator