![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml5N | Structured version Visualization version GIF version |
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleml1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleml1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleml1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdleml1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdleml1.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdleml3.o | ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
cdleml5N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1228 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | cdleml1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdleml1.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdleml1.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | cdleml1.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | cdleml3.o | . . . . 5 ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
7 | 2, 3, 4, 5, 6 | tendo0cl 36580 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ 𝐸) |
8 | 1, 7 | syl 17 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 0 ∈ 𝐸) |
9 | simpl2l 1283 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑈 ∈ 𝐸) | |
10 | 2, 3, 4, 5, 6 | tendo0mul 36616 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → ( 0 ∘ 𝑈) = 0 ) |
11 | 1, 9, 10 | syl2anc 696 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈) = 0 ) |
12 | simpr 479 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑉 = 0 ) | |
13 | 11, 12 | eqtr4d 2797 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈) = 𝑉) |
14 | coeq1 5435 | . . . . 5 ⊢ (𝑠 = 0 → (𝑠 ∘ 𝑈) = ( 0 ∘ 𝑈)) | |
15 | 14 | eqeq1d 2762 | . . . 4 ⊢ (𝑠 = 0 → ((𝑠 ∘ 𝑈) = 𝑉 ↔ ( 0 ∘ 𝑈) = 𝑉)) |
16 | 15 | rspcev 3449 | . . 3 ⊢ (( 0 ∈ 𝐸 ∧ ( 0 ∘ 𝑈) = 𝑉) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
17 | 8, 13, 16 | syl2anc 696 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
18 | simpl1 1228 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
19 | simpl2 1230 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) | |
20 | simpl3 1232 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑈 ≠ 0 ) | |
21 | simpr 479 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑉 ≠ 0 ) | |
22 | cdleml1.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
23 | 2, 3, 4, 22, 5, 6 | cdleml4N 36769 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
24 | 18, 19, 20, 21, 23 | syl112anc 1481 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
25 | 17, 24 | pm2.61dane 3019 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ↦ cmpt 4881 I cid 5173 ↾ cres 5268 ∘ ccom 5270 ‘cfv 6049 Basecbs 16059 HLchlt 35140 LHypclh 35773 LTrncltrn 35890 trLctrl 35948 TEndoctendo 36542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-riotaBAD 34742 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-undef 7568 df-map 8025 df-preset 17129 df-poset 17147 df-plt 17159 df-lub 17175 df-glb 17176 df-join 17177 df-meet 17178 df-p0 17240 df-p1 17241 df-lat 17247 df-clat 17309 df-oposet 34966 df-ol 34968 df-oml 34969 df-covers 35056 df-ats 35057 df-atl 35088 df-cvlat 35112 df-hlat 35141 df-llines 35287 df-lplanes 35288 df-lvols 35289 df-lines 35290 df-psubsp 35292 df-pmap 35293 df-padd 35585 df-lhyp 35777 df-laut 35778 df-ldil 35893 df-ltrn 35894 df-trl 35949 df-tendo 36545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |