Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn9 Structured version   Visualization version   GIF version

Theorem cdlemn9 35311
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b 𝐵 = (Base‘𝐾)
cdlemn8.l = (le‘𝐾)
cdlemn8.a 𝐴 = (Atoms‘𝐾)
cdlemn8.h 𝐻 = (LHyp‘𝐾)
cdlemn8.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn8.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
cdlemn8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn8.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemn8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
cdlemn8.s + = (+g𝑈)
cdlemn8.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn8.g 𝐺 = (𝑇 (𝑃) = 𝑅)
Assertion
Ref Expression
cdlemn9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑔𝑄) = 𝑅)
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑇,   𝑃,   𝑄,   ,𝑊   𝑅,
Allowed substitution hints:   𝐴(𝑔,𝑠)   𝐵(𝑔,𝑠)   𝑃(𝑔,𝑠)   + (𝑔,,𝑠)   𝑄(𝑔,𝑠)   𝑅(𝑔,𝑠)   𝑇(𝑔,𝑠)   𝑈(𝑔,,𝑠)   𝐸(𝑔,,𝑠)   𝐹(𝑔,,𝑠)   𝐺(𝑔,,𝑠)   𝐻(𝑔,𝑠)   𝐾(𝑔,𝑠)   (𝑔,𝑠)   𝑂(𝑔,,𝑠)   𝑊(𝑔,𝑠)

Proof of Theorem cdlemn9
StepHypRef Expression
1 cdlemn8.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemn8.l . . . 4 = (le‘𝐾)
3 cdlemn8.a . . . 4 𝐴 = (Atoms‘𝐾)
4 cdlemn8.h . . . 4 𝐻 = (LHyp‘𝐾)
5 cdlemn8.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
6 cdlemn8.o . . . 4 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
7 cdlemn8.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemn8.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 cdlemn8.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 cdlemn8.s . . . 4 + = (+g𝑈)
11 cdlemn8.f . . . 4 𝐹 = (𝑇 (𝑃) = 𝑄)
12 cdlemn8.g . . . 4 𝐺 = (𝑇 (𝑃) = 𝑅)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemn8 35310 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝑔 = (𝐺𝐹))
1413fveq1d 6086 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑔𝑄) = ((𝐺𝐹)‘𝑄))
15 simp1 1053 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
162, 3, 4, 5lhpocnel2 34122 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
17163ad2ant1 1074 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
18 simp2l 1079 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
192, 3, 4, 7, 11ltrniotacl 34684 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
2015, 17, 18, 19syl3anc 1317 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝐹𝑇)
211, 4, 7ltrn1o 34227 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
2215, 20, 21syl2anc 690 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝐹:𝐵1-1-onto𝐵)
23 f1ocnv 6043 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵)
24 f1of 6031 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
2522, 23, 243syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝐹:𝐵𝐵)
26 simp2ll 1120 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝑄𝐴)
271, 3atbase 33393 . . . 4 (𝑄𝐴𝑄𝐵)
2826, 27syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝑄𝐵)
29 fvco3 6166 . . 3 ((𝐹:𝐵𝐵𝑄𝐵) → ((𝐺𝐹)‘𝑄) = (𝐺‘(𝐹𝑄)))
3025, 28, 29syl2anc 690 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → ((𝐺𝐹)‘𝑄) = (𝐺‘(𝐹𝑄)))
312, 3, 4, 7, 11ltrniotacnvval 34687 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑄) = 𝑃)
3215, 17, 18, 31syl3anc 1317 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐹𝑄) = 𝑃)
3332fveq2d 6088 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐺‘(𝐹𝑄)) = (𝐺𝑃))
34 simp2r 1080 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
352, 3, 4, 7, 12ltrniotaval 34686 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
3615, 17, 34, 35syl3anc 1317 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐺𝑃) = 𝑅)
3733, 36eqtrd 2639 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐺‘(𝐹𝑄)) = 𝑅)
3814, 30, 373eqtrd 2643 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑔𝑄) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1975  cop 4126   class class class wbr 4573  cmpt 4633   I cid 4934  ccnv 5023  cres 5026  ccom 5028  wf 5782  1-1-ontowf1o 5785  cfv 5786  crio 6484  (class class class)co 6523  Basecbs 15637  +gcplusg 15710  lecple 15717  occoc 15718  Atomscatm 33367  HLchlt 33454  LHypclh 34087  LTrncltrn 34204  TEndoctendo 34857  DVecHcdvh 35184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-riotaBAD 33056
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-undef 7259  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-plusg 15723  df-mulr 15724  df-sca 15726  df-vsca 15727  df-preset 16693  df-poset 16711  df-plt 16723  df-lub 16739  df-glb 16740  df-join 16741  df-meet 16742  df-p0 16804  df-p1 16805  df-lat 16811  df-clat 16873  df-oposet 33280  df-ol 33282  df-oml 33283  df-covers 33370  df-ats 33371  df-atl 33402  df-cvlat 33426  df-hlat 33455  df-llines 33601  df-lplanes 33602  df-lvols 33603  df-lines 33604  df-psubsp 33606  df-pmap 33607  df-padd 33899  df-lhyp 34091  df-laut 34092  df-ldil 34207  df-ltrn 34208  df-trl 34263  df-tendo 34860  df-edring 34862  df-dvech 35185
This theorem is referenced by:  cdlemn11pre  35316
  Copyright terms: Public domain W3C validator