MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrex2v Structured version   Visualization version   GIF version

Theorem ceqsrex2v 3326
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.)
Hypotheses
Ref Expression
ceqsrex2v.1 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsrex2v.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ceqsrex2v ((𝐴𝐶𝐵𝐷) → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑥,𝐷,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐶(𝑦)

Proof of Theorem ceqsrex2v
StepHypRef Expression
1 anass 680 . . . . . 6 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
21rexbii 3036 . . . . 5 (∃𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑦𝐷 (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
3 r19.42v 3086 . . . . 5 (∃𝑦𝐷 (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)))
42, 3bitri 264 . . . 4 (∃𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)))
54rexbii 3036 . . 3 (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑥𝐶 (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)))
6 ceqsrex2v.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
76anbi2d 739 . . . . 5 (𝑥 = 𝐴 → ((𝑦 = 𝐵𝜑) ↔ (𝑦 = 𝐵𝜓)))
87rexbidv 3047 . . . 4 (𝑥 = 𝐴 → (∃𝑦𝐷 (𝑦 = 𝐵𝜑) ↔ ∃𝑦𝐷 (𝑦 = 𝐵𝜓)))
98ceqsrexv 3324 . . 3 (𝐴𝐶 → (∃𝑥𝐶 (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)) ↔ ∃𝑦𝐷 (𝑦 = 𝐵𝜓)))
105, 9syl5bb 272 . 2 (𝐴𝐶 → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑦𝐷 (𝑦 = 𝐵𝜓)))
11 ceqsrex2v.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
1211ceqsrexv 3324 . 2 (𝐵𝐷 → (∃𝑦𝐷 (𝑦 = 𝐵𝜓) ↔ 𝜒))
1310, 12sylan9bb 735 1 ((𝐴𝐶𝐵𝐷) → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-12 2044  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-rex 2914  df-v 3192
This theorem is referenced by:  opiota  7189  brdom7disj  9313  brdom6disj  9314  lsmspsn  19024
  Copyright terms: Public domain W3C validator