Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem2 Structured version   Visualization version   GIF version

Theorem cevathlem2 40348
Description: Ceva's theorem second lemma. Relate (doubled) areas of triangles 𝐶𝐴𝑂 and 𝐴𝐵𝑂 with of segments 𝐵𝐷 and 𝐷𝐶. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevath.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
cevath.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevath.b (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
cevath.c (𝜑𝑂 ∈ ℂ)
cevath.d (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
cevath.e (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
cevath.f (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
Assertion
Ref Expression
cevathlem2 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑂,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem cevathlem2
StepHypRef Expression
1 cevath.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 cevath.b . . . . . . . . 9 (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
32simp2d 1072 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
4 cevath.a . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
54simp1d 1071 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
64simp2d 1072 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
73, 5, 63jca 1240 . . . . . . 7 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
8 cevath.c . . . . . . . 8 (𝜑𝑂 ∈ ℂ)
95, 8subcld 10337 . . . . . . . . . 10 (𝜑 → (𝐴𝑂) ∈ ℂ)
103, 8subcld 10337 . . . . . . . . . 10 (𝜑 → (𝐷𝑂) ∈ ℂ)
119, 10jca 554 . . . . . . . . 9 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐷𝑂) ∈ ℂ))
12 cevath.d . . . . . . . . . 10 (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
1312simp1d 1071 . . . . . . . . 9 (𝜑 → ((𝐴𝑂)𝐺(𝐷𝑂)) = 0)
141, 11, 13sigariz 40343 . . . . . . . 8 (𝜑 → ((𝐷𝑂)𝐺(𝐴𝑂)) = 0)
158, 14jca 554 . . . . . . 7 (𝜑 → (𝑂 ∈ ℂ ∧ ((𝐷𝑂)𝐺(𝐴𝑂)) = 0))
161, 7, 15sigaradd 40346 . . . . . 6 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) = ((𝐴𝐵)𝐺(𝑂𝐵)))
171sigarperm 40340 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑂 ∈ ℂ) → ((𝐵𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐵)𝐺(𝑂𝐵)))
186, 5, 8, 17syl3anc 1323 . . . . . 6 (𝜑 → ((𝐵𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐵)𝐺(𝑂𝐵)))
1916, 18eqtr4d 2663 . . . . 5 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) = ((𝐵𝑂)𝐺(𝐴𝑂)))
2019oveq1d 6620 . . . 4 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) · (𝐶𝐷)) = (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)))
215, 6subcld 10337 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℂ)
223, 6subcld 10337 . . . . . . 7 (𝜑 → (𝐷𝐵) ∈ ℂ)
2321, 22jca 554 . . . . . 6 (𝜑 → ((𝐴𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ))
241, 23sigarimcd 40342 . . . . 5 (𝜑 → ((𝐴𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
258, 6subcld 10337 . . . . . . 7 (𝜑 → (𝑂𝐵) ∈ ℂ)
2625, 22jca 554 . . . . . 6 (𝜑 → ((𝑂𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ))
271, 26sigarimcd 40342 . . . . 5 (𝜑 → ((𝑂𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
284simp3d 1073 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2928, 3subcld 10337 . . . . 5 (𝜑 → (𝐶𝐷) ∈ ℂ)
3024, 27, 29subdird 10432 . . . 4 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) · (𝐶𝐷)) = ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))))
3120, 30eqtr3d 2662 . . 3 (𝜑 → (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)) = ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))))
326, 28, 53jca 1240 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
33 cevath.e . . . . . . 7 (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
3433simp2d 1072 . . . . . 6 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) = 0)
353, 34jca 554 . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0))
361, 32, 35sharhght 40345 . . . 4 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) = (((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)))
376, 28, 83jca 1240 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝑂 ∈ ℂ))
381, 37, 35sharhght 40345 . . . 4 (𝜑 → (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) = (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)))
3936, 38oveq12d 6623 . . 3 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))) = ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))))
405, 28subcld 10337 . . . . . . 7 (𝜑 → (𝐴𝐶) ∈ ℂ)
413, 28subcld 10337 . . . . . . 7 (𝜑 → (𝐷𝐶) ∈ ℂ)
421sigarim 40331 . . . . . . 7 (((𝐴𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ) → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℝ)
4340, 41, 42syl2anc 692 . . . . . 6 (𝜑 → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℝ)
4443recnd 10013 . . . . 5 (𝜑 → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℂ)
458, 28subcld 10337 . . . . . . 7 (𝜑 → (𝑂𝐶) ∈ ℂ)
4645, 41jca 554 . . . . . 6 (𝜑 → ((𝑂𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ))
471, 46sigarimcd 40342 . . . . 5 (𝜑 → ((𝑂𝐶)𝐺(𝐷𝐶)) ∈ ℂ)
486, 3subcld 10337 . . . . 5 (𝜑 → (𝐵𝐷) ∈ ℂ)
4944, 47, 48subdird 10432 . . . 4 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) · (𝐵𝐷)) = ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))))
503, 5, 283jca 1240 . . . . . . 7 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ))
511, 50, 15sigaradd 40346 . . . . . 6 (𝜑 → (((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) = ((𝐴𝐶)𝐺(𝑂𝐶)))
521sigarperm 40340 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑂 ∈ ℂ) → ((𝐶𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐶)𝐺(𝑂𝐶)))
5328, 5, 8, 52syl3anc 1323 . . . . . 6 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐶)𝐺(𝑂𝐶)))
5451, 53eqtr4d 2663 . . . . 5 (𝜑 → (((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) = ((𝐶𝑂)𝐺(𝐴𝑂)))
5554oveq1d 6620 . . . 4 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) · (𝐵𝐷)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)))
5649, 55eqtr3d 2662 . . 3 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)))
5731, 39, 563eqtrrd 2665 . 2 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)))
586, 8subcld 10337 . . . 4 (𝜑 → (𝐵𝑂) ∈ ℂ)
591sigarac 40332 . . . 4 (((𝐵𝑂) ∈ ℂ ∧ (𝐴𝑂) ∈ ℂ) → ((𝐵𝑂)𝐺(𝐴𝑂)) = -((𝐴𝑂)𝐺(𝐵𝑂)))
6058, 9, 59syl2anc 692 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐴𝑂)) = -((𝐴𝑂)𝐺(𝐵𝑂)))
6160oveq1d 6620 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)) = (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)))
629, 58jca 554 . . . . 5 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐵𝑂) ∈ ℂ))
631, 62sigarimcd 40342 . . . 4 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ)
64 mulneg12 10413 . . . 4 ((((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)))
6563, 29, 64syl2anc 692 . . 3 (𝜑 → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)))
6628, 3negsubdi2d 10353 . . . 4 (𝜑 → -(𝐶𝐷) = (𝐷𝐶))
6766oveq2d 6621 . . 3 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
6865, 67eqtrd 2660 . 2 (𝜑 → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
6957, 61, 683eqtrd 2664 1 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1992  wne 2796  cfv 5850  (class class class)co 6605  cmpt2 6607  cc 9879  cr 9880  0cc0 9881   · cmul 9886  cmin 10211  -cneg 10212  ccj 13765  cim 13767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-2 11024  df-cj 13768  df-re 13769  df-im 13770
This theorem is referenced by:  cevath  40349
  Copyright terms: Public domain W3C validator