Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem2 Structured version   Visualization version   GIF version

Theorem cevathlem2 41378
Description: Ceva's theorem second lemma. Relate (doubled) areas of triangles 𝐶𝐴𝑂 and 𝐴𝐵𝑂 with of segments 𝐵𝐷 and 𝐷𝐶. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevath.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
cevath.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevath.b (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
cevath.c (𝜑𝑂 ∈ ℂ)
cevath.d (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
cevath.e (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
cevath.f (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
Assertion
Ref Expression
cevathlem2 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑂,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem cevathlem2
StepHypRef Expression
1 cevath.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 cevath.b . . . . . . . . 9 (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
32simp2d 1094 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
4 cevath.a . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
54simp1d 1093 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
64simp2d 1094 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
73, 5, 63jca 1261 . . . . . . 7 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
8 cevath.c . . . . . . . 8 (𝜑𝑂 ∈ ℂ)
95, 8subcld 10430 . . . . . . . . . 10 (𝜑 → (𝐴𝑂) ∈ ℂ)
103, 8subcld 10430 . . . . . . . . . 10 (𝜑 → (𝐷𝑂) ∈ ℂ)
119, 10jca 553 . . . . . . . . 9 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐷𝑂) ∈ ℂ))
12 cevath.d . . . . . . . . . 10 (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
1312simp1d 1093 . . . . . . . . 9 (𝜑 → ((𝐴𝑂)𝐺(𝐷𝑂)) = 0)
141, 11, 13sigariz 41373 . . . . . . . 8 (𝜑 → ((𝐷𝑂)𝐺(𝐴𝑂)) = 0)
158, 14jca 553 . . . . . . 7 (𝜑 → (𝑂 ∈ ℂ ∧ ((𝐷𝑂)𝐺(𝐴𝑂)) = 0))
161, 7, 15sigaradd 41376 . . . . . 6 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) = ((𝐴𝐵)𝐺(𝑂𝐵)))
171sigarperm 41370 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑂 ∈ ℂ) → ((𝐵𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐵)𝐺(𝑂𝐵)))
186, 5, 8, 17syl3anc 1366 . . . . . 6 (𝜑 → ((𝐵𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐵)𝐺(𝑂𝐵)))
1916, 18eqtr4d 2688 . . . . 5 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) = ((𝐵𝑂)𝐺(𝐴𝑂)))
2019oveq1d 6705 . . . 4 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) · (𝐶𝐷)) = (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)))
215, 6subcld 10430 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℂ)
223, 6subcld 10430 . . . . . . 7 (𝜑 → (𝐷𝐵) ∈ ℂ)
2321, 22jca 553 . . . . . 6 (𝜑 → ((𝐴𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ))
241, 23sigarimcd 41372 . . . . 5 (𝜑 → ((𝐴𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
258, 6subcld 10430 . . . . . . 7 (𝜑 → (𝑂𝐵) ∈ ℂ)
2625, 22jca 553 . . . . . 6 (𝜑 → ((𝑂𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ))
271, 26sigarimcd 41372 . . . . 5 (𝜑 → ((𝑂𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
284simp3d 1095 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2928, 3subcld 10430 . . . . 5 (𝜑 → (𝐶𝐷) ∈ ℂ)
3024, 27, 29subdird 10525 . . . 4 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) · (𝐶𝐷)) = ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))))
3120, 30eqtr3d 2687 . . 3 (𝜑 → (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)) = ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))))
326, 28, 53jca 1261 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
33 cevath.e . . . . . . 7 (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
3433simp2d 1094 . . . . . 6 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) = 0)
353, 34jca 553 . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0))
361, 32, 35sharhght 41375 . . . 4 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) = (((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)))
376, 28, 83jca 1261 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝑂 ∈ ℂ))
381, 37, 35sharhght 41375 . . . 4 (𝜑 → (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) = (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)))
3936, 38oveq12d 6708 . . 3 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))) = ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))))
405, 28subcld 10430 . . . . . . 7 (𝜑 → (𝐴𝐶) ∈ ℂ)
413, 28subcld 10430 . . . . . . 7 (𝜑 → (𝐷𝐶) ∈ ℂ)
421sigarim 41361 . . . . . . 7 (((𝐴𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ) → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℝ)
4340, 41, 42syl2anc 694 . . . . . 6 (𝜑 → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℝ)
4443recnd 10106 . . . . 5 (𝜑 → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℂ)
458, 28subcld 10430 . . . . . . 7 (𝜑 → (𝑂𝐶) ∈ ℂ)
4645, 41jca 553 . . . . . 6 (𝜑 → ((𝑂𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ))
471, 46sigarimcd 41372 . . . . 5 (𝜑 → ((𝑂𝐶)𝐺(𝐷𝐶)) ∈ ℂ)
486, 3subcld 10430 . . . . 5 (𝜑 → (𝐵𝐷) ∈ ℂ)
4944, 47, 48subdird 10525 . . . 4 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) · (𝐵𝐷)) = ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))))
503, 5, 283jca 1261 . . . . . . 7 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ))
511, 50, 15sigaradd 41376 . . . . . 6 (𝜑 → (((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) = ((𝐴𝐶)𝐺(𝑂𝐶)))
521sigarperm 41370 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑂 ∈ ℂ) → ((𝐶𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐶)𝐺(𝑂𝐶)))
5328, 5, 8, 52syl3anc 1366 . . . . . 6 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐶)𝐺(𝑂𝐶)))
5451, 53eqtr4d 2688 . . . . 5 (𝜑 → (((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) = ((𝐶𝑂)𝐺(𝐴𝑂)))
5554oveq1d 6705 . . . 4 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) · (𝐵𝐷)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)))
5649, 55eqtr3d 2687 . . 3 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)))
5731, 39, 563eqtrrd 2690 . 2 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)))
586, 8subcld 10430 . . . 4 (𝜑 → (𝐵𝑂) ∈ ℂ)
591sigarac 41362 . . . 4 (((𝐵𝑂) ∈ ℂ ∧ (𝐴𝑂) ∈ ℂ) → ((𝐵𝑂)𝐺(𝐴𝑂)) = -((𝐴𝑂)𝐺(𝐵𝑂)))
6058, 9, 59syl2anc 694 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐴𝑂)) = -((𝐴𝑂)𝐺(𝐵𝑂)))
6160oveq1d 6705 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)) = (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)))
629, 58jca 553 . . . . 5 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐵𝑂) ∈ ℂ))
631, 62sigarimcd 41372 . . . 4 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ)
64 mulneg12 10506 . . . 4 ((((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)))
6563, 29, 64syl2anc 694 . . 3 (𝜑 → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)))
6628, 3negsubdi2d 10446 . . . 4 (𝜑 → -(𝐶𝐷) = (𝐷𝐶))
6766oveq2d 6706 . . 3 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
6865, 67eqtrd 2685 . 2 (𝜑 → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
6957, 61, 683eqtrd 2689 1 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  wne 2823  cfv 5926  (class class class)co 6690  cmpt2 6692  cc 9972  cr 9973  0cc0 9974   · cmul 9979  cmin 10304  -cneg 10305  ccj 13880  cim 13882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-2 11117  df-cj 13883  df-re 13884  df-im 13885
This theorem is referenced by:  cevath  41379
  Copyright terms: Public domain W3C validator