Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcoflem Structured version   Visualization version   GIF version

Theorem cfcoflem 9045
 Description: Lemma for cfcof 9047, showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
cfcoflem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝐵,𝑓,𝑥,𝑦

Proof of Theorem cfcoflem
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 9031 . . 3 (𝐵 ∈ On → ∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)))
2 f1f 6063 . . . . . 6 (𝑔:(cf‘𝐵)–1-1𝐵𝑔:(cf‘𝐵)⟶𝐵)
3 fco 6020 . . . . . . . . . . . . . 14 ((𝑓:𝐵𝐴𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
43adantlr 750 . . . . . . . . . . . . 13 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
54adantr 481 . . . . . . . . . . . 12 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → (𝑓𝑔):(cf‘𝐵)⟶𝐴)
6 r19.29 3066 . . . . . . . . . . . . . . . 16 ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)))
7 ffvelrn 6318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑔𝑧) ∈ 𝐵)
8 ffn 6007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
9 smoword 7415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) ↔ (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
109biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑦𝐵 ∧ (𝑔𝑧) ∈ 𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))
1110exp32 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
128, 11sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔𝑧) ∈ 𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
137, 12syl7 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑦𝐵 → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1413com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
1514expdimp 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑧 ∈ (cf‘𝐵) → (𝑦𝐵 → (𝑦 ⊆ (𝑔𝑧) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧))))))
16153imp2 1279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)))
17 sstr2 3594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ⊆ (𝑓𝑦) → ((𝑓𝑦) ⊆ (𝑓‘(𝑔𝑧)) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
1816, 17syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
19 fvco3 6237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → ((𝑓𝑔)‘𝑧) = (𝑓‘(𝑔𝑧)))
2019sseq2d 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑔:(cf‘𝐵)⟶𝐵𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2120adantll 749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
22213ad2antr1 1224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ ((𝑓𝑔)‘𝑧) ↔ 𝑥 ⊆ (𝑓‘(𝑔𝑧))))
2318, 22sylibrd 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧))) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
2423expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵𝑦 ⊆ (𝑔𝑧)) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
25243expia 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2625com4t 93 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2726imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → ((𝑧 ∈ (cf‘𝐵) ∧ 𝑦𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
2827expcomd 454 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → (𝑧 ∈ (cf‘𝐵) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
2928imp31 448 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) ∧ 𝑧 ∈ (cf‘𝐵)) → (𝑦 ⊆ (𝑔𝑧) → 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3029reximdva 3012 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ 𝑥 ⊆ (𝑓𝑦)) ∧ 𝑦𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3130exp31 629 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (𝑦𝐵 → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3231com34 91 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑥 ⊆ (𝑓𝑦) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3332com23 86 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑥 ⊆ (𝑓𝑦) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))))
3433impd 447 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → (𝑦𝐵 → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3534com23 86 . . . . . . . . . . . . . . . . 17 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (𝑦𝐵 → ((∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
3635rexlimdv 3024 . . . . . . . . . . . . . . . 16 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → (∃𝑦𝐵 (∃𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
376, 36syl5 34 . . . . . . . . . . . . . . 15 (((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) → ((∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3837expdimp 453 . . . . . . . . . . . . . 14 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
3938ralimdv 2958 . . . . . . . . . . . . 13 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4039impr 648 . . . . . . . . . . . 12 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))
41 vex 3192 . . . . . . . . . . . . . 14 𝑓 ∈ V
42 vex 3192 . . . . . . . . . . . . . 14 𝑔 ∈ V
4341, 42coex 7072 . . . . . . . . . . . . 13 (𝑓𝑔) ∈ V
44 feq1 5988 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (:(cf‘𝐵)⟶𝐴 ↔ (𝑓𝑔):(cf‘𝐵)⟶𝐴))
45 fveq1 6152 . . . . . . . . . . . . . . . . 17 ( = (𝑓𝑔) → (𝑧) = ((𝑓𝑔)‘𝑧))
4645sseq2d 3617 . . . . . . . . . . . . . . . 16 ( = (𝑓𝑔) → (𝑥 ⊆ (𝑧) ↔ 𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4746rexbidv 3046 . . . . . . . . . . . . . . 15 ( = (𝑓𝑔) → (∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∃𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4847ralbidv 2981 . . . . . . . . . . . . . 14 ( = (𝑓𝑔) → (∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧) ↔ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)))
4944, 48anbi12d 746 . . . . . . . . . . . . 13 ( = (𝑓𝑔) → ((:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) ↔ ((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧))))
5043, 49spcev 3289 . . . . . . . . . . . 12 (((𝑓𝑔):(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ ((𝑓𝑔)‘𝑧)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
515, 40, 50syl2anc 692 . . . . . . . . . . 11 ((((𝑓:𝐵𝐴 ∧ Smo 𝑓) ∧ 𝑔:(cf‘𝐵)⟶𝐵) ∧ (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))
5251exp43 639 . . . . . . . . . 10 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
5352com24 95 . . . . . . . . 9 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))))
54533impia 1258 . . . . . . . 8 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5554exlimiv 1855 . . . . . . 7 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (𝑔:(cf‘𝐵)⟶𝐵 → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5655com13 88 . . . . . 6 (𝑔:(cf‘𝐵)⟶𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
572, 56syl 17 . . . . 5 (𝑔:(cf‘𝐵)–1-1𝐵 → (∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)))))
5857imp 445 . . . 4 ((𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
5958exlimiv 1855 . . 3 (∃𝑔(𝑔:(cf‘𝐵)–1-1𝐵 ∧ ∀𝑦𝐵𝑧 ∈ (cf‘𝐵)𝑦 ⊆ (𝑔𝑧)) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
601, 59syl 17 . 2 (𝐵 ∈ On → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧))))
61 cfon 9028 . . 3 (cf‘𝐵) ∈ On
62 cfflb 9032 . . 3 ((𝐴 ∈ On ∧ (cf‘𝐵) ∈ On) → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6361, 62mpan2 706 . 2 (𝐴 ∈ On → (∃(:(cf‘𝐵)⟶𝐴 ∧ ∀𝑥𝐴𝑧 ∈ (cf‘𝐵)𝑥 ⊆ (𝑧)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
6460, 63sylan9r 689 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480  ∃wex 1701   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   ⊆ wss 3559   ∘ ccom 5083  Oncon0 5687   Fn wfn 5847  ⟶wf 5848  –1-1→wf1 5849  ‘cfv 5852  Smo wsmo 7394  cfccf 8714 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-smo 7395  df-recs 7420  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-card 8716  df-cf 8718  df-acn 8719 This theorem is referenced by:  cfcof  9047  cfidm  9048
 Copyright terms: Public domain W3C validator