MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfeq0 Structured version   Visualization version   GIF version

Theorem cfeq0 9191
Description: Only the ordinal zero has cofinality zero. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
cfeq0 (𝐴 ∈ On → ((cf‘𝐴) = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cfeq0
Dummy variables 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 9182 . . . 4 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21eqeq1d 2726 . . 3 (𝐴 ∈ On → ((cf‘𝐴) = ∅ ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅))
3 vex 3307 . . . . . . . . 9 𝑣 ∈ V
4 eqeq1 2728 . . . . . . . . . . 11 (𝑥 = 𝑣 → (𝑥 = (card‘𝑦) ↔ 𝑣 = (card‘𝑦)))
54anbi1d 743 . . . . . . . . . 10 (𝑥 = 𝑣 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
65exbidv 1963 . . . . . . . . 9 (𝑥 = 𝑣 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
73, 6elab 3455 . . . . . . . 8 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
8 fveq2 6304 . . . . . . . . . . . 12 (𝑣 = (card‘𝑦) → (card‘𝑣) = (card‘(card‘𝑦)))
9 cardidm 8898 . . . . . . . . . . . 12 (card‘(card‘𝑦)) = (card‘𝑦)
108, 9syl6eq 2774 . . . . . . . . . . 11 (𝑣 = (card‘𝑦) → (card‘𝑣) = (card‘𝑦))
11 eqeq2 2735 . . . . . . . . . . 11 (𝑣 = (card‘𝑦) → ((card‘𝑣) = 𝑣 ↔ (card‘𝑣) = (card‘𝑦)))
1210, 11mpbird 247 . . . . . . . . . 10 (𝑣 = (card‘𝑦) → (card‘𝑣) = 𝑣)
1312adantr 472 . . . . . . . . 9 ((𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (card‘𝑣) = 𝑣)
1413exlimiv 1971 . . . . . . . 8 (∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (card‘𝑣) = 𝑣)
157, 14sylbi 207 . . . . . . 7 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → (card‘𝑣) = 𝑣)
16 cardon 8883 . . . . . . 7 (card‘𝑣) ∈ On
1715, 16syl6eqelr 2812 . . . . . 6 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → 𝑣 ∈ On)
1817ssriv 3713 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ On
19 onint0 7113 . . . . 5 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ On → ( {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅ ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))}))
2018, 19ax-mp 5 . . . 4 ( {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅ ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 0ex 4898 . . . . . 6 ∅ ∈ V
22 eqeq1 2728 . . . . . . . 8 (𝑥 = ∅ → (𝑥 = (card‘𝑦) ↔ ∅ = (card‘𝑦)))
2322anbi1d 743 . . . . . . 7 (𝑥 = ∅ → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2423exbidv 1963 . . . . . 6 (𝑥 = ∅ → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2521, 24elab 3455 . . . . 5 (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
26 onss 7107 . . . . . . . . . . 11 (𝐴 ∈ On → 𝐴 ⊆ On)
27 sstr 3717 . . . . . . . . . . . 12 ((𝑦𝐴𝐴 ⊆ On) → 𝑦 ⊆ On)
2827ancoms 468 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝑦𝐴) → 𝑦 ⊆ On)
2926, 28sylan 489 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ⊆ On)
30293adant2 1123 . . . . . . . . 9 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ 𝑦𝐴) → 𝑦 ⊆ On)
31303adant3r 1173 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
32 simp2 1129 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → ∅ = (card‘𝑦))
33 simp3 1130 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
34 eqcom 2731 . . . . . . . . . . . 12 (∅ = (card‘𝑦) ↔ (card‘𝑦) = ∅)
35 vex 3307 . . . . . . . . . . . . . 14 𝑦 ∈ V
36 onssnum 8976 . . . . . . . . . . . . . 14 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
3735, 36mpan 708 . . . . . . . . . . . . 13 (𝑦 ⊆ On → 𝑦 ∈ dom card)
38 cardnueq0 8903 . . . . . . . . . . . . 13 (𝑦 ∈ dom card → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
3937, 38syl 17 . . . . . . . . . . . 12 (𝑦 ⊆ On → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4034, 39syl5bb 272 . . . . . . . . . . 11 (𝑦 ⊆ On → (∅ = (card‘𝑦) ↔ 𝑦 = ∅))
4140biimpa 502 . . . . . . . . . 10 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → 𝑦 = ∅)
42 sseq1 3732 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ⊆ 𝐴))
43 rexeq 3242 . . . . . . . . . . . . 13 (𝑦 = ∅ → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ ∅ 𝑧𝑤))
4443ralbidv 3088 . . . . . . . . . . . 12 (𝑦 = ∅ → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤))
4542, 44anbi12d 749 . . . . . . . . . . 11 (𝑦 = ∅ → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤)))
4645biimpa 502 . . . . . . . . . 10 ((𝑦 = ∅ ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤))
4741, 46sylan 489 . . . . . . . . 9 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤))
48 rex0 4046 . . . . . . . . . . . . . 14 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
4948rgenw 3026 . . . . . . . . . . . . 13 𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
50 r19.2z 4168 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤) → ∃𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
5149, 50mpan2 709 . . . . . . . . . . . 12 (𝐴 ≠ ∅ → ∃𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
52 rexnal 3097 . . . . . . . . . . . 12 (∃𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤 ↔ ¬ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤)
5351, 52sylib 208 . . . . . . . . . . 11 (𝐴 ≠ ∅ → ¬ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤)
5453necon4ai 2927 . . . . . . . . . 10 (∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤𝐴 = ∅)
5554adantl 473 . . . . . . . . 9 ((∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤) → 𝐴 = ∅)
5647, 55syl 17 . . . . . . . 8 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅)
5731, 32, 33, 56syl21anc 1438 . . . . . . 7 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅)
58573expib 1116 . . . . . 6 (𝐴 ∈ On → ((∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅))
5958exlimdv 1974 . . . . 5 (𝐴 ∈ On → (∃𝑦(∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅))
6025, 59syl5bi 232 . . . 4 (𝐴 ∈ On → (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → 𝐴 = ∅))
6120, 60syl5bi 232 . . 3 (𝐴 ∈ On → ( {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅ → 𝐴 = ∅))
622, 61sylbid 230 . 2 (𝐴 ∈ On → ((cf‘𝐴) = ∅ → 𝐴 = ∅))
63 fveq2 6304 . . 3 (𝐴 = ∅ → (cf‘𝐴) = (cf‘∅))
64 cf0 9186 . . 3 (cf‘∅) = ∅
6563, 64syl6eq 2774 . 2 (𝐴 = ∅ → (cf‘𝐴) = ∅)
6662, 65impbid1 215 1 (𝐴 ∈ On → ((cf‘𝐴) = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wex 1817  wcel 2103  {cab 2710  wne 2896  wral 3014  wrex 3015  Vcvv 3304  wss 3680  c0 4023   cint 4583  dom cdm 5218  Oncon0 5836  cfv 6001  cardccrd 8874  cfccf 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-wrecs 7527  df-recs 7588  df-er 7862  df-en 8073  df-dom 8074  df-card 8878  df-cf 8880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator