MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfeq0 Structured version   Visualization version   GIF version

Theorem cfeq0 9022
Description: Only the ordinal zero has cofinality zero. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
cfeq0 (𝐴 ∈ On → ((cf‘𝐴) = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cfeq0
Dummy variables 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 9013 . . . 4 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21eqeq1d 2623 . . 3 (𝐴 ∈ On → ((cf‘𝐴) = ∅ ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅))
3 vex 3189 . . . . . . . . 9 𝑣 ∈ V
4 eqeq1 2625 . . . . . . . . . . 11 (𝑥 = 𝑣 → (𝑥 = (card‘𝑦) ↔ 𝑣 = (card‘𝑦)))
54anbi1d 740 . . . . . . . . . 10 (𝑥 = 𝑣 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
65exbidv 1847 . . . . . . . . 9 (𝑥 = 𝑣 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
73, 6elab 3333 . . . . . . . 8 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
8 fveq2 6148 . . . . . . . . . . . 12 (𝑣 = (card‘𝑦) → (card‘𝑣) = (card‘(card‘𝑦)))
9 cardidm 8729 . . . . . . . . . . . 12 (card‘(card‘𝑦)) = (card‘𝑦)
108, 9syl6eq 2671 . . . . . . . . . . 11 (𝑣 = (card‘𝑦) → (card‘𝑣) = (card‘𝑦))
11 eqeq2 2632 . . . . . . . . . . 11 (𝑣 = (card‘𝑦) → ((card‘𝑣) = 𝑣 ↔ (card‘𝑣) = (card‘𝑦)))
1210, 11mpbird 247 . . . . . . . . . 10 (𝑣 = (card‘𝑦) → (card‘𝑣) = 𝑣)
1312adantr 481 . . . . . . . . 9 ((𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (card‘𝑣) = 𝑣)
1413exlimiv 1855 . . . . . . . 8 (∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (card‘𝑣) = 𝑣)
157, 14sylbi 207 . . . . . . 7 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → (card‘𝑣) = 𝑣)
16 cardon 8714 . . . . . . 7 (card‘𝑣) ∈ On
1715, 16syl6eqelr 2707 . . . . . 6 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → 𝑣 ∈ On)
1817ssriv 3587 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ On
19 onint0 6943 . . . . 5 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ On → ( {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅ ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))}))
2018, 19ax-mp 5 . . . 4 ( {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅ ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 0ex 4750 . . . . . 6 ∅ ∈ V
22 eqeq1 2625 . . . . . . . 8 (𝑥 = ∅ → (𝑥 = (card‘𝑦) ↔ ∅ = (card‘𝑦)))
2322anbi1d 740 . . . . . . 7 (𝑥 = ∅ → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2423exbidv 1847 . . . . . 6 (𝑥 = ∅ → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2521, 24elab 3333 . . . . 5 (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
26 onss 6937 . . . . . . . . . . 11 (𝐴 ∈ On → 𝐴 ⊆ On)
27 sstr 3591 . . . . . . . . . . . 12 ((𝑦𝐴𝐴 ⊆ On) → 𝑦 ⊆ On)
2827ancoms 469 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝑦𝐴) → 𝑦 ⊆ On)
2926, 28sylan 488 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ⊆ On)
30293adant2 1078 . . . . . . . . 9 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ 𝑦𝐴) → 𝑦 ⊆ On)
31303adant3r 1320 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
32 simp2 1060 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → ∅ = (card‘𝑦))
33 simp3 1061 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
34 eqcom 2628 . . . . . . . . . . . 12 (∅ = (card‘𝑦) ↔ (card‘𝑦) = ∅)
35 vex 3189 . . . . . . . . . . . . . 14 𝑦 ∈ V
36 onssnum 8807 . . . . . . . . . . . . . 14 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
3735, 36mpan 705 . . . . . . . . . . . . 13 (𝑦 ⊆ On → 𝑦 ∈ dom card)
38 cardnueq0 8734 . . . . . . . . . . . . 13 (𝑦 ∈ dom card → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
3937, 38syl 17 . . . . . . . . . . . 12 (𝑦 ⊆ On → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4034, 39syl5bb 272 . . . . . . . . . . 11 (𝑦 ⊆ On → (∅ = (card‘𝑦) ↔ 𝑦 = ∅))
4140biimpa 501 . . . . . . . . . 10 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → 𝑦 = ∅)
42 sseq1 3605 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ⊆ 𝐴))
43 rexeq 3128 . . . . . . . . . . . . 13 (𝑦 = ∅ → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ ∅ 𝑧𝑤))
4443ralbidv 2980 . . . . . . . . . . . 12 (𝑦 = ∅ → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤))
4542, 44anbi12d 746 . . . . . . . . . . 11 (𝑦 = ∅ → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤)))
4645biimpa 501 . . . . . . . . . 10 ((𝑦 = ∅ ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤))
4741, 46sylan 488 . . . . . . . . 9 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤))
48 rex0 3914 . . . . . . . . . . . . . 14 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
4948rgenw 2919 . . . . . . . . . . . . 13 𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
50 r19.2z 4032 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤) → ∃𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
5149, 50mpan2 706 . . . . . . . . . . . 12 (𝐴 ≠ ∅ → ∃𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
52 rexnal 2989 . . . . . . . . . . . 12 (∃𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤 ↔ ¬ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤)
5351, 52sylib 208 . . . . . . . . . . 11 (𝐴 ≠ ∅ → ¬ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤)
5453necon4ai 2821 . . . . . . . . . 10 (∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤𝐴 = ∅)
5554adantl 482 . . . . . . . . 9 ((∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤) → 𝐴 = ∅)
5647, 55syl 17 . . . . . . . 8 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅)
5731, 32, 33, 56syl21anc 1322 . . . . . . 7 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅)
58573expib 1265 . . . . . 6 (𝐴 ∈ On → ((∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅))
5958exlimdv 1858 . . . . 5 (𝐴 ∈ On → (∃𝑦(∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅))
6025, 59syl5bi 232 . . . 4 (𝐴 ∈ On → (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → 𝐴 = ∅))
6120, 60syl5bi 232 . . 3 (𝐴 ∈ On → ( {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅ → 𝐴 = ∅))
622, 61sylbid 230 . 2 (𝐴 ∈ On → ((cf‘𝐴) = ∅ → 𝐴 = ∅))
63 fveq2 6148 . . 3 (𝐴 = ∅ → (cf‘𝐴) = (cf‘∅))
64 cf0 9017 . . 3 (cf‘∅) = ∅
6563, 64syl6eq 2671 . 2 (𝐴 = ∅ → (cf‘𝐴) = ∅)
6662, 65impbid1 215 1 (𝐴 ∈ On → ((cf‘𝐴) = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2907  wrex 2908  Vcvv 3186  wss 3555  c0 3891   cint 4440  dom cdm 5074  Oncon0 5682  cfv 5847  cardccrd 8705  cfccf 8707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-wrecs 7352  df-recs 7413  df-er 7687  df-en 7900  df-dom 7901  df-card 8709  df-cf 8711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator