MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilufg Structured version   Visualization version   GIF version

Theorem cfilufg 22904
Description: The filter generated by a Cauchy filter base is still a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
cfilufg ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu𝑈))

Proof of Theorem cfilufg
Dummy variables 𝑎 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfilufbas 22900 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → 𝐹 ∈ (fBas‘𝑋))
2 fgcl 22488 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
3 filfbas 22458 . . 3 ((𝑋filGen𝐹) ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ∈ (fBas‘𝑋))
41, 2, 33syl 18 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (fBas‘𝑋))
51ad3antrrr 728 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝐹 ∈ (fBas‘𝑋))
6 ssfg 22482 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
75, 6syl 17 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝐹 ⊆ (𝑋filGen𝐹))
8 simplr 767 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝑏𝐹)
97, 8sseldd 3970 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝑏 ∈ (𝑋filGen𝐹))
10 id 22 . . . . . . . 8 (𝑎 = 𝑏𝑎 = 𝑏)
1110sqxpeqd 5589 . . . . . . 7 (𝑎 = 𝑏 → (𝑎 × 𝑎) = (𝑏 × 𝑏))
1211sseq1d 4000 . . . . . 6 (𝑎 = 𝑏 → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ (𝑏 × 𝑏) ⊆ 𝑣))
1312rspcev 3625 . . . . 5 ((𝑏 ∈ (𝑋filGen𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
149, 13sylancom 590 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
15 iscfilu 22899 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑏𝐹 (𝑏 × 𝑏) ⊆ 𝑣)))
1615simplbda 502 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ∀𝑣𝑈𝑏𝐹 (𝑏 × 𝑏) ⊆ 𝑣)
1716r19.21bi 3210 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) → ∃𝑏𝐹 (𝑏 × 𝑏) ⊆ 𝑣)
1814, 17r19.29a 3291 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
1918ralrimiva 3184 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ∀𝑣𝑈𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
20 iscfilu 22899 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ((𝑋filGen𝐹) ∈ (CauFilu𝑈) ↔ ((𝑋filGen𝐹) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)))
2120adantr 483 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ((𝑋filGen𝐹) ∈ (CauFilu𝑈) ↔ ((𝑋filGen𝐹) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)))
224, 19, 21mpbir2and 711 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wral 3140  wrex 3141  wss 3938   × cxp 5555  cfv 6357  (class class class)co 7158  fBascfbas 20535  filGencfg 20536  Filcfil 22455  UnifOncust 22810  CauFiluccfilu 22897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-fbas 20544  df-fg 20545  df-fil 22456  df-ust 22811  df-cfilu 22898
This theorem is referenced by:  ucnextcn  22915
  Copyright terms: Public domain W3C validator