MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinfil Structured version   Visualization version   GIF version

Theorem cfinfil 22429
Description: Relative complements of the finite parts of an infinite set is a filter. When 𝐴 = ℕ the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinfil ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cfinfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4090 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
21eleq1d 2894 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
32elrab 3677 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦) ∈ Fin))
4 velpw 4543 . . . . 5 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
54anbi1i 623 . . . 4 ((𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦) ∈ Fin) ↔ (𝑦𝑋 ∧ (𝐴𝑦) ∈ Fin))
63, 5bitri 276 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ (𝑦𝑋 ∧ (𝐴𝑦) ∈ Fin))
76a1i 11 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ (𝑦𝑋 ∧ (𝐴𝑦) ∈ Fin)))
8 elex 3510 . . 3 (𝑋𝑉𝑋 ∈ V)
983ad2ant1 1125 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → 𝑋 ∈ V)
10 ssdif0 4320 . . . . 5 (𝐴𝑋 ↔ (𝐴𝑋) = ∅)
11 0fin 8734 . . . . . 6 ∅ ∈ Fin
12 eleq1 2897 . . . . . 6 ((𝐴𝑋) = ∅ → ((𝐴𝑋) ∈ Fin ↔ ∅ ∈ Fin))
1311, 12mpbiri 259 . . . . 5 ((𝐴𝑋) = ∅ → (𝐴𝑋) ∈ Fin)
1410, 13sylbi 218 . . . 4 (𝐴𝑋 → (𝐴𝑋) ∈ Fin)
15 difeq2 4090 . . . . . . 7 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
1615eleq1d 2894 . . . . . 6 (𝑦 = 𝑋 → ((𝐴𝑦) ∈ Fin ↔ (𝐴𝑋) ∈ Fin))
1716sbcieg 3807 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴𝑋) ∈ Fin))
1817biimpar 478 . . . 4 ((𝑋𝑉 ∧ (𝐴𝑋) ∈ Fin) → [𝑋 / 𝑦](𝐴𝑦) ∈ Fin)
1914, 18sylan2 592 . . 3 ((𝑋𝑉𝐴𝑋) → [𝑋 / 𝑦](𝐴𝑦) ∈ Fin)
20193adant3 1124 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → [𝑋 / 𝑦](𝐴𝑦) ∈ Fin)
21 0ex 5202 . . . . . 6 ∅ ∈ V
22 difeq2 4090 . . . . . . 7 (𝑦 = ∅ → (𝐴𝑦) = (𝐴 ∖ ∅))
2322eleq1d 2894 . . . . . 6 (𝑦 = ∅ → ((𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈ Fin))
2421, 23sbcie 3809 . . . . 5 ([∅ / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈ Fin)
25 dif0 4329 . . . . . 6 (𝐴 ∖ ∅) = 𝐴
2625eleq1i 2900 . . . . 5 ((𝐴 ∖ ∅) ∈ Fin ↔ 𝐴 ∈ Fin)
2724, 26sylbb 220 . . . 4 ([∅ / 𝑦](𝐴𝑦) ∈ Fin → 𝐴 ∈ Fin)
2827con3i 157 . . 3 𝐴 ∈ Fin → ¬ [∅ / 𝑦](𝐴𝑦) ∈ Fin)
29283ad2ant3 1127 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → ¬ [∅ / 𝑦](𝐴𝑦) ∈ Fin)
30 sscon 4112 . . . . 5 (𝑤𝑧 → (𝐴𝑧) ⊆ (𝐴𝑤))
31 ssfi 8726 . . . . . 6 (((𝐴𝑤) ∈ Fin ∧ (𝐴𝑧) ⊆ (𝐴𝑤)) → (𝐴𝑧) ∈ Fin)
3231expcom 414 . . . . 5 ((𝐴𝑧) ⊆ (𝐴𝑤) → ((𝐴𝑤) ∈ Fin → (𝐴𝑧) ∈ Fin))
3330, 32syl 17 . . . 4 (𝑤𝑧 → ((𝐴𝑤) ∈ Fin → (𝐴𝑧) ∈ Fin))
34 vex 3495 . . . . 5 𝑤 ∈ V
35 difeq2 4090 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝑦) = (𝐴𝑤))
3635eleq1d 2894 . . . . 5 (𝑦 = 𝑤 → ((𝐴𝑦) ∈ Fin ↔ (𝐴𝑤) ∈ Fin))
3734, 36sbcie 3809 . . . 4 ([𝑤 / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴𝑤) ∈ Fin)
38 vex 3495 . . . . 5 𝑧 ∈ V
39 difeq2 4090 . . . . . 6 (𝑦 = 𝑧 → (𝐴𝑦) = (𝐴𝑧))
4039eleq1d 2894 . . . . 5 (𝑦 = 𝑧 → ((𝐴𝑦) ∈ Fin ↔ (𝐴𝑧) ∈ Fin))
4138, 40sbcie 3809 . . . 4 ([𝑧 / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴𝑧) ∈ Fin)
4233, 37, 413imtr4g 297 . . 3 (𝑤𝑧 → ([𝑤 / 𝑦](𝐴𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴𝑦) ∈ Fin))
43423ad2ant3 1127 . 2 (((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧𝑋𝑤𝑧) → ([𝑤 / 𝑦](𝐴𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴𝑦) ∈ Fin))
44 difindi 4255 . . . . 5 (𝐴 ∖ (𝑧𝑤)) = ((𝐴𝑧) ∪ (𝐴𝑤))
45 unfi 8773 . . . . 5 (((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin) → ((𝐴𝑧) ∪ (𝐴𝑤)) ∈ Fin)
4644, 45eqeltrid 2914 . . . 4 (((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin) → (𝐴 ∖ (𝑧𝑤)) ∈ Fin)
4746a1i 11 . . 3 (((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧𝑋𝑤𝑋) → (((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin) → (𝐴 ∖ (𝑧𝑤)) ∈ Fin))
4841, 37anbi12i 626 . . 3 (([𝑧 / 𝑦](𝐴𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴𝑦) ∈ Fin) ↔ ((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin))
4938inex1 5212 . . . 4 (𝑧𝑤) ∈ V
50 difeq2 4090 . . . . 5 (𝑦 = (𝑧𝑤) → (𝐴𝑦) = (𝐴 ∖ (𝑧𝑤)))
5150eleq1d 2894 . . . 4 (𝑦 = (𝑧𝑤) → ((𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧𝑤)) ∈ Fin))
5249, 51sbcie 3809 . . 3 ([(𝑧𝑤) / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧𝑤)) ∈ Fin)
5347, 48, 523imtr4g 297 . 2 (((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧𝑋𝑤𝑋) → (([𝑧 / 𝑦](𝐴𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴𝑦) ∈ Fin) → [(𝑧𝑤) / 𝑦](𝐴𝑦) ∈ Fin))
547, 9, 20, 29, 43, 53isfild 22394 1 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  {crab 3139  Vcvv 3492  [wsbc 3769  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535  cfv 6348  Fincfn 8497  Filcfil 22381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-oadd 8095  df-er 8278  df-en 8498  df-fin 8501  df-fbas 20470  df-fil 22382
This theorem is referenced by:  ufinffr  22465
  Copyright terms: Public domain W3C validator