MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinufil Structured version   Visualization version   GIF version

Theorem cfinufil 22538
Description: An ultrafilter is free iff it contains the Fréchet filter cfinfil 22503 as a subset. (Contributed by NM, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinufil (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem cfinufil
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4550 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2 ufilb 22516 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
32adantr 483 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
4 ufilfil 22514 . . . . . . . . . . . 12 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
54adantr 483 . . . . . . . . . . 11 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝐹 ∈ (Fil‘𝑋))
6 filfinnfr 22487 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑋𝑥) ∈ 𝐹 ∧ (𝑋𝑥) ∈ Fin) → 𝐹 ≠ ∅)
763exp 1115 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ 𝐹 → ((𝑋𝑥) ∈ Fin → 𝐹 ≠ ∅)))
87com23 86 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ Fin → ((𝑋𝑥) ∈ 𝐹 𝐹 ≠ ∅)))
95, 8syl 17 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ Fin → ((𝑋𝑥) ∈ 𝐹 𝐹 ≠ ∅)))
109imp 409 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → ((𝑋𝑥) ∈ 𝐹 𝐹 ≠ ∅))
113, 10sylbid 242 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → (¬ 𝑥𝐹 𝐹 ≠ ∅))
1211necon4bd 3038 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → ( 𝐹 = ∅ → 𝑥𝐹))
1312ex 415 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ Fin → ( 𝐹 = ∅ → 𝑥𝐹)))
1413com23 86 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ( 𝐹 = ∅ → ((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
151, 14sylan2 594 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → ( 𝐹 = ∅ → ((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
1615ralrimdva 3191 . . 3 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ → ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
174adantr 483 . . . . . . . . . . . 12 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → 𝐹 ∈ (Fil‘𝑋))
18 uffixsn 22535 . . . . . . . . . . . 12 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → {𝑦} ∈ 𝐹)
19 filelss 22462 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑦} ∈ 𝐹) → {𝑦} ⊆ 𝑋)
2017, 18, 19syl2anc 586 . . . . . . . . . . 11 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → {𝑦} ⊆ 𝑋)
21 dfss4 4237 . . . . . . . . . . 11 ({𝑦} ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ {𝑦})) = {𝑦})
2220, 21sylib 220 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (𝑋 ∖ (𝑋 ∖ {𝑦})) = {𝑦})
23 snfi 8596 . . . . . . . . . 10 {𝑦} ∈ Fin
2422, 23eqeltrdi 2923 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin)
25 difss 4110 . . . . . . . . . . 11 (𝑋 ∖ {𝑦}) ⊆ 𝑋
26 filtop 22465 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
27 elpw2g 5249 . . . . . . . . . . . 12 (𝑋𝐹 → ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ {𝑦}) ⊆ 𝑋))
2817, 26, 273syl 18 . . . . . . . . . . 11 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ {𝑦}) ⊆ 𝑋))
2925, 28mpbiri 260 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋)
30 difeq2 4095 . . . . . . . . . . . . 13 (𝑥 = (𝑋 ∖ {𝑦}) → (𝑋𝑥) = (𝑋 ∖ (𝑋 ∖ {𝑦})))
3130eleq1d 2899 . . . . . . . . . . . 12 (𝑥 = (𝑋 ∖ {𝑦}) → ((𝑋𝑥) ∈ Fin ↔ (𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin))
32 eleq1 2902 . . . . . . . . . . . 12 (𝑥 = (𝑋 ∖ {𝑦}) → (𝑥𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹))
3331, 32imbi12d 347 . . . . . . . . . . 11 (𝑥 = (𝑋 ∖ {𝑦}) → (((𝑋𝑥) ∈ Fin → 𝑥𝐹) ↔ ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹)))
3433rspcv 3620 . . . . . . . . . 10 ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹)))
3529, 34syl 17 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹)))
3624, 35mpid 44 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → (𝑋 ∖ {𝑦}) ∈ 𝐹))
37 ufilb 22516 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ {𝑦} ⊆ 𝑋) → (¬ {𝑦} ∈ 𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹))
3820, 37syldan 593 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (¬ {𝑦} ∈ 𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹))
3918pm2.24d 154 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (¬ {𝑦} ∈ 𝐹 → ¬ 𝑦 𝐹))
4038, 39sylbird 262 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → ((𝑋 ∖ {𝑦}) ∈ 𝐹 → ¬ 𝑦 𝐹))
4136, 40syld 47 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → ¬ 𝑦 𝐹))
4241impancom 454 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)) → (𝑦 𝐹 → ¬ 𝑦 𝐹))
4342pm2.01d 192 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)) → ¬ 𝑦 𝐹)
4443eq0rdv 4359 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)) → 𝐹 = ∅)
4544ex 415 . . 3 (𝐹 ∈ (UFil‘𝑋) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → 𝐹 = ∅))
4616, 45impbid 214 . 2 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
47 rabss 4050 . 2 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹 ↔ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹))
4846, 47syl6bbr 291 1 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cint 4878  cfv 6357  Fincfn 8511  Filcfil 22455  UFilcufil 22509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fbas 20544  df-fg 20545  df-fil 22456  df-ufil 22511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator