MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfpwsdom Structured version   Visualization version   GIF version

Theorem cfpwsdom 9995
Description: A corollary of Konig's Theorem konigth 9980. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
cfpwsdom.1 𝐵 ∈ V
Assertion
Ref Expression
cfpwsdom (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))

Proof of Theorem cfpwsdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7178 . . . . . . . . 9 (𝐵m (ℵ‘𝐴)) ∈ V
21cardid 9958 . . . . . . . 8 (card‘(𝐵m (ℵ‘𝐴))) ≈ (𝐵m (ℵ‘𝐴))
32ensymi 8548 . . . . . . 7 (𝐵m (ℵ‘𝐴)) ≈ (card‘(𝐵m (ℵ‘𝐴)))
4 fvex 6677 . . . . . . . . . . . . . 14 (ℵ‘𝐴) ∈ V
54canth2 8659 . . . . . . . . . . . . 13 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
64pw2en 8613 . . . . . . . . . . . . 13 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))
7 sdomentr 8640 . . . . . . . . . . . . 13 (((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)))
85, 6, 7mp2an 688 . . . . . . . . . . . 12 (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴))
9 mapdom1 8671 . . . . . . . . . . . 12 (2o𝐵 → (2om (ℵ‘𝐴)) ≼ (𝐵m (ℵ‘𝐴)))
10 sdomdomtr 8639 . . . . . . . . . . . 12 (((ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)) ∧ (2om (ℵ‘𝐴)) ≼ (𝐵m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
118, 9, 10sylancr 587 . . . . . . . . . . 11 (2o𝐵 → (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
12 ficard 9976 . . . . . . . . . . . . . . . . 17 ((𝐵m (ℵ‘𝐴)) ∈ V → ((𝐵m (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω))
131, 12ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐵m (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω)
14 fict 9105 . . . . . . . . . . . . . . . 16 ((𝐵m (ℵ‘𝐴)) ∈ Fin → (𝐵m (ℵ‘𝐴)) ≼ ω)
1513, 14sylbir 236 . . . . . . . . . . . . . . 15 ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (𝐵m (ℵ‘𝐴)) ≼ ω)
16 alephgeom 9497 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
17 alephon 9484 . . . . . . . . . . . . . . . . 17 (ℵ‘𝐴) ∈ On
18 ssdomg 8544 . . . . . . . . . . . . . . . . 17 ((ℵ‘𝐴) ∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
1917, 18ax-mp 5 . . . . . . . . . . . . . . . 16 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
2016, 19sylbi 218 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ω ≼ (ℵ‘𝐴))
21 domtr 8551 . . . . . . . . . . . . . . 15 (((𝐵m (ℵ‘𝐴)) ≼ ω ∧ ω ≼ (ℵ‘𝐴)) → (𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
2215, 20, 21syl2an 595 . . . . . . . . . . . . . 14 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → (𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
23 domnsym 8632 . . . . . . . . . . . . . 14 ((𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
2422, 23syl 17 . . . . . . . . . . . . 13 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
2524expcom 414 . . . . . . . . . . . 12 (𝐴 ∈ On → ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴))))
2625con2d 136 . . . . . . . . . . 11 (𝐴 ∈ On → ((ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)) → ¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω))
27 cardidm 9377 . . . . . . . . . . . 12 (card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴)))
28 iscard3 9508 . . . . . . . . . . . . 13 ((card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴))) ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ))
29 elun 4124 . . . . . . . . . . . . 13 ((card‘(𝐵m (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ) ↔ ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
30 df-or 842 . . . . . . . . . . . . 13 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ) ↔ (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
3128, 29, 303bitri 298 . . . . . . . . . . . 12 ((card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴))) ↔ (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
3227, 31mpbi 231 . . . . . . . . . . 11 (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ)
3311, 26, 32syl56 36 . . . . . . . . . 10 (𝐴 ∈ On → (2o𝐵 → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
34 alephfnon 9480 . . . . . . . . . . 11 ℵ Fn On
35 fvelrnb 6720 . . . . . . . . . . 11 (ℵ Fn On → ((card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴)))))
3634, 35ax-mp 5 . . . . . . . . . 10 ((card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))))
3733, 36syl6ib 252 . . . . . . . . 9 (𝐴 ∈ On → (2o𝐵 → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴)))))
38 eqid 2821 . . . . . . . . . . . 12 (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦))) = (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦)))
3938pwcfsdom 9994 . . . . . . . . . . 11 (ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥)))
40 id 22 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))))
41 fveq2 6664 . . . . . . . . . . . . 13 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (cf‘(ℵ‘𝑥)) = (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
4240, 41oveq12d 7163 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥))) = ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4340, 42breq12d 5071 . . . . . . . . . . 11 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → ((ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥))) ↔ (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
4439, 43mpbii 234 . . . . . . . . . 10 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4544rexlimivw 3282 . . . . . . . . 9 (∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4637, 45syl6 35 . . . . . . . 8 (𝐴 ∈ On → (2o𝐵 → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
4746imp 407 . . . . . . 7 ((𝐴 ∈ On ∧ 2o𝐵) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
48 ensdomtr 8642 . . . . . . 7 (((𝐵m (ℵ‘𝐴)) ≈ (card‘(𝐵m (ℵ‘𝐴))) ∧ (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) → (𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
493, 47, 48sylancr 587 . . . . . 6 ((𝐴 ∈ On ∧ 2o𝐵) → (𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
50 fvex 6677 . . . . . . . . 9 (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V
5150enref 8531 . . . . . . . 8 (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵m (ℵ‘𝐴))))
52 mapen 8670 . . . . . . . 8 (((card‘(𝐵m (ℵ‘𝐴))) ≈ (𝐵m (ℵ‘𝐴)) ∧ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵m (ℵ‘𝐴))))) → ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
532, 51, 52mp2an 688 . . . . . . 7 ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
54 cfpwsdom.1 . . . . . . . 8 𝐵 ∈ V
55 mapxpen 8672 . . . . . . . 8 ((𝐵 ∈ V ∧ (ℵ‘𝐴) ∈ On ∧ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V) → ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
5654, 17, 50, 55mp3an 1452 . . . . . . 7 ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
5753, 56entri 8552 . . . . . 6 ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
58 sdomentr 8640 . . . . . 6 (((𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ∧ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))) → (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
5949, 57, 58sylancl 586 . . . . 5 ((𝐴 ∈ On ∧ 2o𝐵) → (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
604xpdom2 8601 . . . . . . . . . 10 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)))
6116biimpi 217 . . . . . . . . . . 11 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
62 infxpen 9429 . . . . . . . . . . 11 (((ℵ‘𝐴) ∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6317, 61, 62sylancr 587 . . . . . . . . . 10 (𝐴 ∈ On → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
64 domentr 8557 . . . . . . . . . 10 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) ∧ ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
6560, 63, 64syl2an 595 . . . . . . . . 9 (((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
66 nsuceq0 6265 . . . . . . . . . . 11 suc 1o ≠ ∅
67 dom0 8634 . . . . . . . . . . 11 (suc 1o ≼ ∅ ↔ suc 1o = ∅)
6866, 67nemtbir 3112 . . . . . . . . . 10 ¬ suc 1o ≼ ∅
69 df-2o 8094 . . . . . . . . . . . . . 14 2o = suc 1o
7069breq1i 5065 . . . . . . . . . . . . 13 (2o𝐵 ↔ suc 1o𝐵)
71 breq2 5062 . . . . . . . . . . . . 13 (𝐵 = ∅ → (suc 1o𝐵 ↔ suc 1o ≼ ∅))
7270, 71syl5bb 284 . . . . . . . . . . . 12 (𝐵 = ∅ → (2o𝐵 ↔ suc 1o ≼ ∅))
7372biimpcd 250 . . . . . . . . . . 11 (2o𝐵 → (𝐵 = ∅ → suc 1o ≼ ∅))
7473adantld 491 . . . . . . . . . 10 (2o𝐵 → ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅) → suc 1o ≼ ∅))
7568, 74mtoi 200 . . . . . . . . 9 (2o𝐵 → ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅))
76 mapdom2 8677 . . . . . . . . 9 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴) ∧ ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅)) → (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)))
7765, 75, 76syl2an 595 . . . . . . . 8 ((((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2o𝐵) → (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)))
78 domnsym 8632 . . . . . . . 8 ((𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
7977, 78syl 17 . . . . . . 7 ((((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2o𝐵) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
8079expl 458 . . . . . 6 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((𝐴 ∈ On ∧ 2o𝐵) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))))
8180com12 32 . . . . 5 ((𝐴 ∈ On ∧ 2o𝐵) → ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))))
8259, 81mt2d 138 . . . 4 ((𝐴 ∈ On ∧ 2o𝐵) → ¬ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
83 domtri 9967 . . . . . 6 (((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V ∧ (ℵ‘𝐴) ∈ V) → ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
8450, 4, 83mp2an 688 . . . . 5 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
8584biimpri 229 . . . 4 (¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
8682, 85nsyl2 143 . . 3 ((𝐴 ∈ On ∧ 2o𝐵) → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
8786ex 413 . 2 (𝐴 ∈ On → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
88 fndm 6449 . . . . . 6 (ℵ Fn On → dom ℵ = On)
8934, 88ax-mp 5 . . . . 5 dom ℵ = On
9089eleq2i 2904 . . . 4 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
91 ndmfv 6694 . . . 4 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
9290, 91sylnbir 332 . . 3 𝐴 ∈ On → (ℵ‘𝐴) = ∅)
93 1n0 8110 . . . . . 6 1o ≠ ∅
94 1oex 8101 . . . . . . 7 1o ∈ V
95940sdom 8637 . . . . . 6 (∅ ≺ 1o ↔ 1o ≠ ∅)
9693, 95mpbir 232 . . . . 5 ∅ ≺ 1o
97 id 22 . . . . . 6 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) = ∅)
98 oveq2 7153 . . . . . . . . . . 11 ((ℵ‘𝐴) = ∅ → (𝐵m (ℵ‘𝐴)) = (𝐵m ∅))
99 map0e 8436 . . . . . . . . . . . 12 (𝐵 ∈ V → (𝐵m ∅) = 1o)
10054, 99ax-mp 5 . . . . . . . . . . 11 (𝐵m ∅) = 1o
10198, 100syl6eq 2872 . . . . . . . . . 10 ((ℵ‘𝐴) = ∅ → (𝐵m (ℵ‘𝐴)) = 1o)
102101fveq2d 6668 . . . . . . . . 9 ((ℵ‘𝐴) = ∅ → (card‘(𝐵m (ℵ‘𝐴))) = (card‘1o))
103 1onn 8255 . . . . . . . . . 10 1o ∈ ω
104 cardnn 9381 . . . . . . . . . 10 (1o ∈ ω → (card‘1o) = 1o)
105103, 104ax-mp 5 . . . . . . . . 9 (card‘1o) = 1o
106102, 105syl6eq 2872 . . . . . . . 8 ((ℵ‘𝐴) = ∅ → (card‘(𝐵m (ℵ‘𝐴))) = 1o)
107106fveq2d 6668 . . . . . . 7 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) = (cf‘1o))
108 df-1o 8093 . . . . . . . . 9 1o = suc ∅
109108fveq2i 6667 . . . . . . . 8 (cf‘1o) = (cf‘suc ∅)
110 0elon 6238 . . . . . . . . 9 ∅ ∈ On
111 cfsuc 9668 . . . . . . . . 9 (∅ ∈ On → (cf‘suc ∅) = 1o)
112110, 111ax-mp 5 . . . . . . . 8 (cf‘suc ∅) = 1o
113109, 112eqtri 2844 . . . . . . 7 (cf‘1o) = 1o
114107, 113syl6eq 2872 . . . . . 6 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) = 1o)
11597, 114breq12d 5071 . . . . 5 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ↔ ∅ ≺ 1o))
11696, 115mpbiri 259 . . . 4 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
117116a1d 25 . . 3 ((ℵ‘𝐴) = ∅ → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
11892, 117syl 17 . 2 𝐴 ∈ On → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
11987, 118pm2.61i 183 1 (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3016  wrex 3139  Vcvv 3495  cun 3933  wss 3935  c0 4290  𝒫 cpw 4537   class class class wbr 5058  cmpt 5138   × cxp 5547  dom cdm 5549  ran crn 5550  Oncon0 6185  suc csuc 6187   Fn wfn 6344  cfv 6349  (class class class)co 7145  ωcom 7568  1oc1o 8086  2oc2o 8087  m cmap 8396  cen 8495  cdom 8496  csdm 8497  Fincfn 8498  harchar 9009  cardccrd 9353  cale 9354  cfccf 9355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-ac2 9874
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-smo 7974  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-oi 8963  df-har 9011  df-card 9357  df-aleph 9358  df-cf 9359  df-acn 9360  df-ac 9531
This theorem is referenced by:  alephom  9996
  Copyright terms: Public domain W3C validator