MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb Structured version   Visualization version   GIF version

Theorem cfslb 9691
Description: Any cofinal subset of 𝐴 is at least as large as (cf‘𝐴). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslb ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵)

Proof of Theorem cfslb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6686 . . 3 (card‘𝐵) ∈ V
2 ssid 3992 . . . . . . 7 (card‘𝐵) ⊆ (card‘𝐵)
3 cfslb.1 . . . . . . . . . . 11 𝐴 ∈ V
43ssex 5228 . . . . . . . . . 10 (𝐵𝐴𝐵 ∈ V)
54ad2antrr 724 . . . . . . . . 9 (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → 𝐵 ∈ V)
6 velpw 4547 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
7 sseq1 3995 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
86, 7syl5bb 285 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑥 ∈ 𝒫 𝐴𝐵𝐴))
9 unieq 4852 . . . . . . . . . . . . 13 (𝑥 = 𝐵 𝑥 = 𝐵)
109eqeq1d 2826 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ( 𝑥 = 𝐴 𝐵 = 𝐴))
118, 10anbi12d 632 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝐵𝐴 𝐵 = 𝐴)))
12 fveq2 6673 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (card‘𝑥) = (card‘𝐵))
1312sseq1d 4001 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((card‘𝑥) ⊆ (card‘𝐵) ↔ (card‘𝐵) ⊆ (card‘𝐵)))
1411, 13anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝐵 → (((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)) ↔ ((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵))))
1514spcegv 3600 . . . . . . . . 9 (𝐵 ∈ V → (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵))))
165, 15mpcom 38 . . . . . . . 8 (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
17 df-rex 3147 . . . . . . . . 9 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝑥) ⊆ (card‘𝐵)))
18 rabid 3381 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
1918anbi1i 625 . . . . . . . . . 10 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝑥) ⊆ (card‘𝐵)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
2019exbii 1847 . . . . . . . . 9 (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝑥) ⊆ (card‘𝐵)) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
2117, 20bitri 277 . . . . . . . 8 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
2216, 21sylibr 236 . . . . . . 7 (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
232, 22mpan2 689 . . . . . 6 ((𝐵𝐴 𝐵 = 𝐴) → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
24 iinss 4983 . . . . . 6 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
2523, 24syl 17 . . . . 5 ((𝐵𝐴 𝐵 = 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
263cflim3 9687 . . . . . 6 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
2726sseq1d 4001 . . . . 5 (Lim 𝐴 → ((cf‘𝐴) ⊆ (card‘𝐵) ↔ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵)))
2825, 27syl5ibr 248 . . . 4 (Lim 𝐴 → ((𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ⊆ (card‘𝐵)))
29283impib 1112 . . 3 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ⊆ (card‘𝐵))
30 ssdomg 8558 . . 3 ((card‘𝐵) ∈ V → ((cf‘𝐴) ⊆ (card‘𝐵) → (cf‘𝐴) ≼ (card‘𝐵)))
311, 29, 30mpsyl 68 . 2 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ (card‘𝐵))
32 limord 6253 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
33 ordsson 7507 . . . . . . 7 (Ord 𝐴𝐴 ⊆ On)
3432, 33syl 17 . . . . . 6 (Lim 𝐴𝐴 ⊆ On)
35 sstr2 3977 . . . . . 6 (𝐵𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On))
3634, 35mpan9 509 . . . . 5 ((Lim 𝐴𝐵𝐴) → 𝐵 ⊆ On)
37 onssnum 9469 . . . . 5 ((𝐵 ∈ V ∧ 𝐵 ⊆ On) → 𝐵 ∈ dom card)
384, 36, 37syl2an2 684 . . . 4 ((Lim 𝐴𝐵𝐴) → 𝐵 ∈ dom card)
39 cardid2 9385 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
4038, 39syl 17 . . 3 ((Lim 𝐴𝐵𝐴) → (card‘𝐵) ≈ 𝐵)
41403adant3 1128 . 2 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (card‘𝐵) ≈ 𝐵)
42 domentr 8571 . 2 (((cf‘𝐴) ≼ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → (cf‘𝐴) ≼ 𝐵)
4331, 41, 42syl2anc 586 1 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  wrex 3142  {crab 3145  Vcvv 3497  wss 3939  𝒫 cpw 4542   cuni 4841   ciin 4923   class class class wbr 5069  dom cdm 5558  Ord word 6193  Oncon0 6194  Lim wlim 6195  cfv 6358  cen 8509  cdom 8510  cardccrd 9367  cfccf 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-wrecs 7950  df-recs 8011  df-er 8292  df-en 8513  df-dom 8514  df-card 9371  df-cf 9373
This theorem is referenced by:  cfslbn  9692  cfslb2n  9693  rankcf  10202
  Copyright terms: Public domain W3C validator