MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslbn Structured version   Visualization version   GIF version

Theorem cfslbn 9041
Description: Any subset of 𝐴 smaller than its cofinality has union less than 𝐴. (This is the contrapositive to cfslb 9040.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslbn ((Lim 𝐴𝐵𝐴𝐵 ≺ (cf‘𝐴)) → 𝐵𝐴)

Proof of Theorem cfslbn
StepHypRef Expression
1 uniss 4429 . . . . . . . 8 (𝐵𝐴 𝐵 𝐴)
2 limuni 5749 . . . . . . . . 9 (Lim 𝐴𝐴 = 𝐴)
32sseq2d 3617 . . . . . . . 8 (Lim 𝐴 → ( 𝐵𝐴 𝐵 𝐴))
41, 3syl5ibr 236 . . . . . . 7 (Lim 𝐴 → (𝐵𝐴 𝐵𝐴))
54imp 445 . . . . . 6 ((Lim 𝐴𝐵𝐴) → 𝐵𝐴)
6 limord 5748 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
7 ordsson 6943 . . . . . . . . . . . 12 (Ord 𝐴𝐴 ⊆ On)
86, 7syl 17 . . . . . . . . . . 11 (Lim 𝐴𝐴 ⊆ On)
9 sstr2 3594 . . . . . . . . . . 11 (𝐵𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On))
108, 9syl5com 31 . . . . . . . . . 10 (Lim 𝐴 → (𝐵𝐴𝐵 ⊆ On))
11 ssorduni 6939 . . . . . . . . . 10 (𝐵 ⊆ On → Ord 𝐵)
1210, 11syl6 35 . . . . . . . . 9 (Lim 𝐴 → (𝐵𝐴 → Ord 𝐵))
1312, 6jctird 566 . . . . . . . 8 (Lim 𝐴 → (𝐵𝐴 → (Ord 𝐵 ∧ Ord 𝐴)))
14 ordsseleq 5716 . . . . . . . 8 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴)))
1513, 14syl6 35 . . . . . . 7 (Lim 𝐴 → (𝐵𝐴 → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴))))
1615imp 445 . . . . . 6 ((Lim 𝐴𝐵𝐴) → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴)))
175, 16mpbid 222 . . . . 5 ((Lim 𝐴𝐵𝐴) → ( 𝐵𝐴 𝐵 = 𝐴))
1817ord 392 . . . 4 ((Lim 𝐴𝐵𝐴) → (¬ 𝐵𝐴 𝐵 = 𝐴))
19 cfslb.1 . . . . . . 7 𝐴 ∈ V
2019cfslb 9040 . . . . . 6 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵)
21 domnsym 8038 . . . . . 6 ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴))
2220, 21syl 17 . . . . 5 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → ¬ 𝐵 ≺ (cf‘𝐴))
23223expia 1264 . . . 4 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
2418, 23syld 47 . . 3 ((Lim 𝐴𝐵𝐴) → (¬ 𝐵𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
2524con4d 114 . 2 ((Lim 𝐴𝐵𝐴) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
26253impia 1258 1 ((Lim 𝐴𝐵𝐴𝐵 ≺ (cf‘𝐴)) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3189  wss 3559   cuni 4407   class class class wbr 4618  Ord word 5686  Oncon0 5687  Lim wlim 5688  cfv 5852  cdom 7905  csdm 7906  cfccf 8715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-wrecs 7359  df-recs 7420  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-card 8717  df-cf 8719
This theorem is referenced by:  cfslb2n  9042
  Copyright terms: Public domain W3C validator