Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfval Structured version   Visualization version   GIF version

Theorem cfval 9281
 Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number 𝐴 is the cardinality (size) of the smallest unbounded subset 𝑦 of the ordinal number. Unbounded means that for every member of 𝐴, there is a member of 𝑦 that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfval (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝐴

Proof of Theorem cfval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cflem 9280 . . 3 (𝐴 ∈ On → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
2 intexab 4971 . . 3 (∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V)
31, 2sylib 208 . 2 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V)
4 sseq2 3768 . . . . . . . 8 (𝑣 = 𝐴 → (𝑦𝑣𝑦𝐴))
5 raleq 3277 . . . . . . . 8 (𝑣 = 𝐴 → (∀𝑧𝑣𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
64, 5anbi12d 749 . . . . . . 7 (𝑣 = 𝐴 → ((𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤) ↔ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
76anbi2d 742 . . . . . 6 (𝑣 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤)) ↔ (𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
87exbidv 1999 . . . . 5 (𝑣 = 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
98abbidv 2879 . . . 4 (𝑣 = 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤))} = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
109inteqd 4632 . . 3 (𝑣 = 𝐴 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤))} = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
11 df-cf 8977 . . 3 cf = (𝑣 ∈ On ↦ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤))})
1210, 11fvmptg 6443 . 2 ((𝐴 ∈ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
133, 12mpdan 705 1 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139  {cab 2746  ∀wral 3050  ∃wrex 3051  Vcvv 3340   ⊆ wss 3715  ∩ cint 4627  Oncon0 5884  ‘cfv 6049  cardccrd 8971  cfccf 8973 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-cf 8977 This theorem is referenced by:  cfub  9283  cflm  9284  cardcf  9286  cflecard  9287  cfeq0  9290  cfsuc  9291  cff1  9292  cfflb  9293  cfval2  9294  cflim3  9296
 Copyright terms: Public domain W3C validator