MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgr3swap12 Structured version   Visualization version   GIF version

Theorem cgr3swap12 25325
Description: Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgbtwnxfr.a (𝜑𝐴𝑃)
tgbtwnxfr.b (𝜑𝐵𝑃)
tgbtwnxfr.c (𝜑𝐶𝑃)
tgbtwnxfr.d (𝜑𝐷𝑃)
tgbtwnxfr.e (𝜑𝐸𝑃)
tgbtwnxfr.f (𝜑𝐹𝑃)
tgbtwnxfr.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
cgr3swap12 (𝜑 → ⟨“𝐵𝐴𝐶”⟩ ⟨“𝐸𝐷𝐹”⟩)

Proof of Theorem cgr3swap12
StepHypRef Expression
1 tgcgrxfr.p . 2 𝑃 = (Base‘𝐺)
2 tgcgrxfr.m . 2 = (dist‘𝐺)
3 tgcgrxfr.r . 2 = (cgrG‘𝐺)
4 tgcgrxfr.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnxfr.b . 2 (𝜑𝐵𝑃)
6 tgbtwnxfr.a . 2 (𝜑𝐴𝑃)
7 tgbtwnxfr.c . 2 (𝜑𝐶𝑃)
8 tgbtwnxfr.e . 2 (𝜑𝐸𝑃)
9 tgbtwnxfr.d . 2 (𝜑𝐷𝑃)
10 tgbtwnxfr.f . 2 (𝜑𝐹𝑃)
11 tgcgrxfr.i . . 3 𝐼 = (Itv‘𝐺)
12 tgbtwnxfr.2 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
131, 2, 11, 3, 4, 6, 5, 7, 9, 8, 10, 12cgr3simp1 25322 . . 3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
141, 2, 11, 4, 6, 5, 9, 8, 13tgcgrcomlr 25282 . 2 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
151, 2, 11, 3, 4, 6, 5, 7, 9, 8, 10, 12cgr3simp3 25324 . . 3 (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
161, 2, 11, 4, 7, 6, 10, 9, 15tgcgrcomlr 25282 . 2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
171, 2, 11, 3, 4, 6, 5, 7, 9, 8, 10, 12cgr3simp2 25323 . . 3 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
181, 2, 11, 4, 5, 7, 8, 10, 17tgcgrcomlr 25282 . 2 (𝜑 → (𝐶 𝐵) = (𝐹 𝐸))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 18trgcgr 25318 1 (𝜑 → ⟨“𝐵𝐴𝐶”⟩ ⟨“𝐸𝐷𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987   class class class wbr 4615  cfv 5849  ⟨“cs3 13527  Basecbs 15784  distcds 15874  TarskiGcstrkg 25236  Itvcitv 25242  cgrGccgrg 25312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-pm 7808  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-fz 12272  df-fzo 12410  df-hash 13061  df-word 13241  df-concat 13243  df-s1 13244  df-s2 13533  df-s3 13534  df-trkgc 25254  df-trkgcb 25256  df-trkg 25259  df-cgrg 25313
This theorem is referenced by:  cgr3swap13  25327  cgr3rotr  25328  cgr3rotl  25329  lnxfr  25368  tgfscgr  25370
  Copyright terms: Public domain W3C validator