MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracgr Structured version   Visualization version   GIF version

Theorem cgracgr 25755
Description: First direction of proposition 11.4 of [Schwabhauser] p. 95. Again, this is "half" of the proposition, i.e. only two additional points are used, while Schwabhauser has four. (Contributed by Thierry Arnoux, 31-Jul-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
cgrahl1.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgrahl1.x (𝜑𝑋𝑃)
cgracgr.m = (dist‘𝐺)
cgracgr.y (𝜑𝑌𝑃)
cgracgr.1 (𝜑𝑋(𝐾𝐵)𝐴)
cgracgr.2 (𝜑𝑌(𝐾𝐵)𝐶)
cgracgr.3 (𝜑 → (𝐵 𝑋) = (𝐸 𝐷))
cgracgr.4 (𝜑 → (𝐵 𝑌) = (𝐸 𝐹))
Assertion
Ref Expression
cgracgr (𝜑 → (𝑋 𝑌) = (𝐷 𝐹))

Proof of Theorem cgracgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2651 . . 3 (LineG‘𝐺) = (LineG‘𝐺)
3 iscgra.i . . 3 𝐼 = (Itv‘𝐺)
4 iscgra.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
6 iscgra.a . . . 4 (𝜑𝐴𝑃)
76ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐴𝑃)
8 iscgra.b . . . 4 (𝜑𝐵𝑃)
98ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐵𝑃)
10 cgrahl1.x . . . 4 (𝜑𝑋𝑃)
1110ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑋𝑃)
12 eqid 2651 . . 3 (cgrG‘𝐺) = (cgrG‘𝐺)
13 simpllr 815 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥𝑃)
14 iscgra.e . . . 4 (𝜑𝐸𝑃)
1514ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐸𝑃)
16 cgracgr.m . . 3 = (dist‘𝐺)
17 cgracgr.y . . . 4 (𝜑𝑌𝑃)
1817ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑌𝑃)
19 iscgra.d . . . 4 (𝜑𝐷𝑃)
2019ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷𝑃)
21 iscgra.f . . . 4 (𝜑𝐹𝑃)
2221ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐹𝑃)
23 iscgra.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
24 iscgra.c . . . . . . . . 9 (𝜑𝐶𝑃)
25 cgrahl1.2 . . . . . . . . 9 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
261, 3, 23, 4, 6, 8, 24, 19, 14, 21, 25cgrane1 25749 . . . . . . . 8 (𝜑𝐴𝐵)
2726necomd 2878 . . . . . . 7 (𝜑𝐵𝐴)
28 cgracgr.1 . . . . . . . 8 (𝜑𝑋(𝐾𝐵)𝐴)
291, 3, 23, 10, 6, 8, 4, 2, 28hlln 25547 . . . . . . 7 (𝜑𝑋 ∈ (𝐴(LineG‘𝐺)𝐵))
301, 3, 2, 4, 8, 6, 10, 27, 29lncom 25562 . . . . . 6 (𝜑𝑋 ∈ (𝐵(LineG‘𝐺)𝐴))
3130orcd 406 . . . . 5 (𝜑 → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐴) ∨ 𝐵 = 𝐴))
321, 2, 3, 4, 8, 6, 10, 31colrot1 25499 . . . 4 (𝜑 → (𝐵 ∈ (𝐴(LineG‘𝐺)𝑋) ∨ 𝐴 = 𝑋))
3332ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 ∈ (𝐴(LineG‘𝐺)𝑋) ∨ 𝐴 = 𝑋))
3424ad3antrrr 766 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐶𝑃)
35 simplr 807 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦𝑃)
36 simpr1 1087 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
371, 16, 3, 12, 5, 7, 9, 34, 13, 15, 35, 36cgr3simp1 25460 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 𝐵) = (𝑥 𝐸))
38 cgracgr.3 . . . . 5 (𝜑 → (𝐵 𝑋) = (𝐸 𝐷))
3938ad3antrrr 766 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝑋) = (𝐸 𝐷))
40 eqid 2651 . . . . . . 7 (≤G‘𝐺) = (≤G‘𝐺)
41 simpr2 1088 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝐷)
421, 3, 23, 13, 20, 15, 5ishlg 25542 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥(𝐾𝐸)𝐷 ↔ (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))))
4341, 42mpbid 222 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥))))
4443simp3d 1095 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))
451, 3, 23, 10, 6, 8, 4ishlg 25542 . . . . . . . . . . 11 (𝜑 → (𝑋(𝐾𝐵)𝐴 ↔ (𝑋𝐵𝐴𝐵 ∧ (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋)))))
4628, 45mpbid 222 . . . . . . . . . 10 (𝜑 → (𝑋𝐵𝐴𝐵 ∧ (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋))))
4746simp3d 1095 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋)))
4847orcomd 402 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐵𝐼𝑋) ∨ 𝑋 ∈ (𝐵𝐼𝐴)))
4948ad3antrrr 766 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 ∈ (𝐵𝐼𝑋) ∨ 𝑋 ∈ (𝐵𝐼𝐴)))
5037eqcomd 2657 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 𝐸) = (𝐴 𝐵))
511, 16, 3, 5, 13, 15, 7, 9, 50tgcgrcomlr 25420 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐸 𝑥) = (𝐵 𝐴))
5239eqcomd 2657 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐸 𝐷) = (𝐵 𝑋))
531, 16, 3, 40, 5, 15, 13, 20, 9, 9, 7, 11, 44, 49, 51, 52tgcgrsub2 25535 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 𝐷) = (𝐴 𝑋))
5453eqcomd 2657 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 𝑋) = (𝑥 𝐷))
551, 16, 3, 5, 7, 11, 13, 20, 54tgcgrcomlr 25420 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑋 𝐴) = (𝐷 𝑥))
561, 16, 12, 5, 7, 9, 11, 13, 15, 20, 37, 39, 55trgcgr 25456 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝐷”⟩)
57 cgracgr.2 . . . . . . . . 9 (𝜑𝑌(𝐾𝐵)𝐶)
581, 3, 23, 17, 24, 8, 4, 2, 57hlln 25547 . . . . . . . 8 (𝜑𝑌 ∈ (𝐶(LineG‘𝐺)𝐵))
5958orcd 406 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵))
601, 2, 3, 4, 24, 8, 17, 59colrot1 25499 . . . . . 6 (𝜑 → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑌) ∨ 𝐵 = 𝑌))
6160ad3antrrr 766 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑌) ∨ 𝐵 = 𝑌))
621, 16, 3, 12, 5, 7, 9, 34, 13, 15, 35, 36cgr3simp2 25461 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝐶) = (𝐸 𝑦))
631, 3, 23, 17, 24, 8, 4ishlg 25542 . . . . . . . . . . 11 (𝜑 → (𝑌(𝐾𝐵)𝐶 ↔ (𝑌𝐵𝐶𝐵 ∧ (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌)))))
6457, 63mpbid 222 . . . . . . . . . 10 (𝜑 → (𝑌𝐵𝐶𝐵 ∧ (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌))))
6564simp3d 1095 . . . . . . . . 9 (𝜑 → (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌)))
6665orcomd 402 . . . . . . . 8 (𝜑 → (𝐶 ∈ (𝐵𝐼𝑌) ∨ 𝑌 ∈ (𝐵𝐼𝐶)))
6766ad3antrrr 766 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 ∈ (𝐵𝐼𝑌) ∨ 𝑌 ∈ (𝐵𝐼𝐶)))
68 simpr3 1089 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦(𝐾𝐸)𝐹)
691, 3, 23, 35, 22, 15, 5ishlg 25542 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑦(𝐾𝐸)𝐹 ↔ (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))))
7068, 69mpbid 222 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦))))
7170simp3d 1095 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))
72 cgracgr.4 . . . . . . . 8 (𝜑 → (𝐵 𝑌) = (𝐸 𝐹))
7372ad3antrrr 766 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝑌) = (𝐸 𝐹))
741, 16, 3, 40, 5, 9, 34, 18, 15, 15, 35, 22, 67, 71, 62, 73tgcgrsub2 25535 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 𝑌) = (𝑦 𝐹))
751, 16, 3, 5, 9, 18, 15, 22, 73tgcgrcomlr 25420 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑌 𝐵) = (𝐹 𝐸))
761, 16, 12, 5, 9, 34, 18, 15, 35, 22, 62, 74, 75trgcgr 25456 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → ⟨“𝐵𝐶𝑌”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝐹”⟩)
7751eqcomd 2657 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝐴) = (𝐸 𝑥))
781, 16, 3, 12, 5, 7, 9, 34, 13, 15, 35, 36cgr3simp3 25462 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 𝐴) = (𝑦 𝑥))
791, 3, 23, 4, 6, 8, 24, 19, 14, 21, 25cgrane2 25750 . . . . . 6 (𝜑𝐵𝐶)
8079ad3antrrr 766 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐵𝐶)
811, 2, 3, 5, 9, 34, 18, 12, 15, 35, 16, 7, 22, 13, 61, 76, 77, 78, 80tgfscgr 25508 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑌 𝐴) = (𝐹 𝑥))
821, 16, 3, 5, 18, 7, 22, 13, 81tgcgrcomlr 25420 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 𝑌) = (𝑥 𝐹))
8326ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐴𝐵)
841, 2, 3, 5, 7, 9, 11, 12, 13, 15, 16, 18, 20, 22, 33, 56, 82, 73, 83tgfscgr 25508 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑋 𝑌) = (𝐷 𝐹))
851, 3, 23, 4, 6, 8, 24, 19, 14, 21iscgra 25746 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
8625, 85mpbid 222 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))
8784, 86r19.29vva 3110 1 (𝜑 → (𝑋 𝑌) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  ⟨“cs3 13633  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  Itvcitv 25380  LineGclng 25381  cgrGccgrg 25450  ≤Gcleg 25522  hlGchlg 25540  cgrAccgra 25744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkg 25397  df-cgrg 25451  df-leg 25523  df-hlg 25541  df-cgra 25745
This theorem is referenced by:  cgracom  25759  cgratr  25760  dfcgra2  25766  tgsas1  25780  tgasa1  25784
  Copyright terms: Public domain W3C validator