MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgraswap Structured version   Visualization version   GIF version

Theorem cgraswap 25612
Description: Swap rays in a congruence relation. Theorem 11.9 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgraid.1 (𝜑𝐴𝐵)
cgraid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
cgraswap (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)

Proof of Theorem cgraswap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 eqid 2621 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
3 cgraid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
4 cgraid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 765 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG)
6 cgraid.b . . . . . . . . 9 (𝜑𝐵𝑃)
76ad3antrrr 765 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝑃)
8 simpllr 798 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥𝑃)
9 cgraid.a . . . . . . . . 9 (𝜑𝐴𝑃)
109ad3antrrr 765 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴𝑃)
11 simprlr 802 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))
121, 2, 3, 5, 7, 8, 7, 10, 11tgcgrcomlr 25275 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝐵) = (𝐴(dist‘𝐺)𝐵))
1312eqcomd 2627 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵))
14 simprrr 804 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))
1514eqcomd 2627 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦))
16 simplr 791 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦𝑃)
17 cgraid.c . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad3antrrr 765 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶𝑃)
19 eqid 2621 . . . . . . . . 9 (LineG‘𝐺) = (LineG‘𝐺)
20 eqid 2621 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
21 cgraid.k . . . . . . . . . . . 12 𝐾 = (hlG‘𝐺)
22 simprll 801 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾𝐵)𝐶)
231, 3, 21, 8, 18, 7, 5, 19, 22hlln 25402 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥 ∈ (𝐶(LineG‘𝐺)𝐵))
2423orcd 407 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵))
251, 19, 3, 5, 18, 7, 8, 24colrot1 25354 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑥) ∨ 𝐵 = 𝑥))
26 eqid 2621 . . . . . . . . . . 11 (≤G‘𝐺) = (≤G‘𝐺)
271, 3, 21, 8, 18, 7, 5ishlg 25397 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(𝐾𝐵)𝐶 ↔ (𝑥𝐵𝐶𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥)))))
2822, 27mpbid 222 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥𝐵𝐶𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥))))
2928simp3d 1073 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥)))
3029orcomd 403 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵𝐼𝑥) ∨ 𝑥 ∈ (𝐵𝐼𝐶)))
31 simprrl 803 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾𝐵)𝐴)
321, 3, 21, 16, 10, 7, 5ishlg 25397 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(𝐾𝐵)𝐴 ↔ (𝑦𝐵𝐴𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦)))))
3331, 32mpbid 222 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦𝐵𝐴𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦))))
3433simp3d 1073 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦)))
351, 2, 3, 26, 5, 7, 18, 8, 7, 7, 16, 10, 30, 34, 15, 11tgcgrsub2 25390 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑥) = (𝑦(dist‘𝐺)𝐴))
361, 2, 20, 5, 7, 18, 8, 7, 16, 10, 15, 35, 12trgcgr 25311 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐵𝐶𝑥”⟩(cgrG‘𝐺)⟨“𝐵𝑦𝐴”⟩)
371, 2, 3, 5, 18, 16axtgcgrrflx 25261 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝐶))
38 cgraid.2 . . . . . . . . . 10 (𝜑𝐵𝐶)
3938ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝐶)
401, 19, 3, 5, 7, 18, 8, 20, 7, 16, 2, 16, 10, 18, 25, 36, 14, 37, 39tgfscgr 25363 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝑦) = (𝐴(dist‘𝐺)𝐶))
411, 2, 3, 5, 8, 16, 10, 18, 40tgcgrcomlr 25275 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(dist‘𝐺)𝑥) = (𝐶(dist‘𝐺)𝐴))
4241eqcomd 2627 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
4313, 15, 423jca 1240 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ((𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵) ∧ (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥)))
4443ad2ant1 1080 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝐺 ∈ TarskiG)
4593ad2ant1 1080 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝐴𝑃)
4663ad2ant1 1080 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝐵𝑃)
47173ad2ant1 1080 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝐶𝑃)
48 simp2 1060 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝑥𝑃)
49 simp3 1061 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝑦𝑃)
501, 2, 20, 44, 45, 46, 47, 48, 46, 49trgcgrg 25310 . . . . . . 7 ((𝜑𝑥𝑃𝑦𝑃) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ↔ ((𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵) ∧ (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))))
51503expa 1262 . . . . . 6 (((𝜑𝑥𝑃) ∧ 𝑦𝑃) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ↔ ((𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵) ∧ (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))))
5251adantr 481 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ↔ ((𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵) ∧ (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))))
5343, 52mpbird 247 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩)
5453, 22, 313jca 1240 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴))
5538necomd 2845 . . . . 5 (𝜑𝐶𝐵)
56 cgraid.1 . . . . . 6 (𝜑𝐴𝐵)
5756necomd 2845 . . . . 5 (𝜑𝐵𝐴)
581, 3, 21, 6, 6, 9, 4, 17, 2, 55, 57hlcgrex 25411 . . . 4 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)))
591, 3, 21, 6, 6, 17, 4, 9, 2, 56, 38hlcgrex 25411 . . . 4 (𝜑 → ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))
60 reeanv 3097 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
6158, 59, 60sylanbrc 697 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
6254, 61reximddv2 3013 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴))
631, 3, 21, 4, 9, 6, 17, 17, 6, 9iscgra 25601 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴)))
6462, 63mpbird 247 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908   class class class wbr 4613  cfv 5847  (class class class)co 6604  ⟨“cs3 13524  Basecbs 15781  distcds 15871  TarskiGcstrkg 25229  Itvcitv 25235  LineGclng 25236  cgrGccgrg 25305  ≤Gcleg 25377  hlGchlg 25395  cgrAccgra 25599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-trkgc 25247  df-trkgb 25248  df-trkgcb 25249  df-trkg 25252  df-cgrg 25306  df-leg 25378  df-hlg 25396  df-cgra 25600
This theorem is referenced by:  cgraswaplr  25616  oacgr  25623  tgasa1  25639  isoas  25644
  Copyright terms: Public domain W3C validator