MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgraswap Structured version   Visualization version   GIF version

Theorem cgraswap 25903
Description: Swap rays in a congruence relation. Theorem 11.9 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgraid.1 (𝜑𝐴𝐵)
cgraid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
cgraswap (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)

Proof of Theorem cgraswap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 eqid 2752 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
3 cgraid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
4 cgraid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 768 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG)
6 cgraid.b . . . . . . . . 9 (𝜑𝐵𝑃)
76ad3antrrr 768 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝑃)
8 simpllr 817 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥𝑃)
9 cgraid.a . . . . . . . . 9 (𝜑𝐴𝑃)
109ad3antrrr 768 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴𝑃)
11 simprlr 822 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))
121, 2, 3, 5, 7, 8, 7, 10, 11tgcgrcomlr 25566 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝐵) = (𝐴(dist‘𝐺)𝐵))
1312eqcomd 2758 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵))
14 simprrr 824 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))
1514eqcomd 2758 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦))
16 simplr 809 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦𝑃)
17 cgraid.c . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad3antrrr 768 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶𝑃)
19 eqid 2752 . . . . . . . . 9 (LineG‘𝐺) = (LineG‘𝐺)
20 eqid 2752 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
21 cgraid.k . . . . . . . . . . . 12 𝐾 = (hlG‘𝐺)
22 simprll 821 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾𝐵)𝐶)
231, 3, 21, 8, 18, 7, 5, 19, 22hlln 25693 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥 ∈ (𝐶(LineG‘𝐺)𝐵))
2423orcd 406 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵))
251, 19, 3, 5, 18, 7, 8, 24colrot1 25645 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑥) ∨ 𝐵 = 𝑥))
26 eqid 2752 . . . . . . . . . . 11 (≤G‘𝐺) = (≤G‘𝐺)
271, 3, 21, 8, 18, 7, 5ishlg 25688 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(𝐾𝐵)𝐶 ↔ (𝑥𝐵𝐶𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥)))))
2822, 27mpbid 222 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥𝐵𝐶𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥))))
2928simp3d 1138 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥)))
3029orcomd 402 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵𝐼𝑥) ∨ 𝑥 ∈ (𝐵𝐼𝐶)))
31 simprrl 823 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾𝐵)𝐴)
321, 3, 21, 16, 10, 7, 5ishlg 25688 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(𝐾𝐵)𝐴 ↔ (𝑦𝐵𝐴𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦)))))
3331, 32mpbid 222 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦𝐵𝐴𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦))))
3433simp3d 1138 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦)))
351, 2, 3, 26, 5, 7, 18, 8, 7, 7, 16, 10, 30, 34, 15, 11tgcgrsub2 25681 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑥) = (𝑦(dist‘𝐺)𝐴))
361, 2, 20, 5, 7, 18, 8, 7, 16, 10, 15, 35, 12trgcgr 25602 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐵𝐶𝑥”⟩(cgrG‘𝐺)⟨“𝐵𝑦𝐴”⟩)
371, 2, 3, 5, 18, 16axtgcgrrflx 25552 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝐶))
38 cgraid.2 . . . . . . . . . 10 (𝜑𝐵𝐶)
3938ad3antrrr 768 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝐶)
401, 19, 3, 5, 7, 18, 8, 20, 7, 16, 2, 16, 10, 18, 25, 36, 14, 37, 39tgfscgr 25654 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝑦) = (𝐴(dist‘𝐺)𝐶))
411, 2, 3, 5, 8, 16, 10, 18, 40tgcgrcomlr 25566 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(dist‘𝐺)𝑥) = (𝐶(dist‘𝐺)𝐴))
4241eqcomd 2758 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
4313, 15, 423jca 1122 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ((𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵) ∧ (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥)))
4443ad2ant1 1127 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝐺 ∈ TarskiG)
4593ad2ant1 1127 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝐴𝑃)
4663ad2ant1 1127 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝐵𝑃)
47173ad2ant1 1127 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝐶𝑃)
48 simp2 1131 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝑥𝑃)
49 simp3 1132 . . . . . . . 8 ((𝜑𝑥𝑃𝑦𝑃) → 𝑦𝑃)
501, 2, 20, 44, 45, 46, 47, 48, 46, 49trgcgrg 25601 . . . . . . 7 ((𝜑𝑥𝑃𝑦𝑃) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ↔ ((𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵) ∧ (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))))
51503expa 1111 . . . . . 6 (((𝜑𝑥𝑃) ∧ 𝑦𝑃) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ↔ ((𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵) ∧ (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))))
5251adantr 472 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ↔ ((𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵) ∧ (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))))
5343, 52mpbird 247 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩)
5453, 22, 313jca 1122 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴))
5538necomd 2979 . . . . 5 (𝜑𝐶𝐵)
56 cgraid.1 . . . . . 6 (𝜑𝐴𝐵)
5756necomd 2979 . . . . 5 (𝜑𝐵𝐴)
581, 3, 21, 6, 6, 9, 4, 17, 2, 55, 57hlcgrex 25702 . . . 4 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)))
591, 3, 21, 6, 6, 17, 4, 9, 2, 56, 38hlcgrex 25702 . . . 4 (𝜑 → ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))
60 reeanv 3237 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
6158, 59, 60sylanbrc 701 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
6254, 61reximddv2 3150 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴))
631, 3, 21, 4, 9, 6, 17, 17, 6, 9iscgra 25892 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴)))
6462, 63mpbird 247 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  wrex 3043   class class class wbr 4796  cfv 6041  (class class class)co 6805  ⟨“cs3 13779  Basecbs 16051  distcds 16144  TarskiGcstrkg 25520  Itvcitv 25526  LineGclng 25527  cgrGccgrg 25596  ≤Gcleg 25668  hlGchlg 25686  cgrAccgra 25890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-concat 13479  df-s1 13480  df-s2 13785  df-s3 13786  df-trkgc 25538  df-trkgb 25539  df-trkgcb 25540  df-trkg 25543  df-cgrg 25597  df-leg 25669  df-hlg 25687  df-cgra 25891
This theorem is referenced by:  cgraswaplr  25907  oacgr  25914  tgasa1  25930  isoas  25935
  Copyright terms: Public domain W3C validator